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New Scientist,23.09.2019: s e —————— e

Google claims it has finally ScienceNews
reached quantum supremacy ™

“Google’s quantum processor Rumors hint that Google has
tackled a random sampling accomplished quantum
prablem ... Although one of its SUpremacy
qubits didn’t work, the specihc ypo ofcaleuation

remaining 53 were quantum
entangled with one another
and used to generate a set of
binary digits and check their
distribution was truly random.
The paper calculates the task
would have taken Summit, the
world's best supercomputer,
10,000 years — hut Sycamore
did it in 3 minutes and 20
seconds.”

Source: httpsy//www.sciencenews.org/article/rumers-hint-that-google-has-accomplished-
quantum-supremacy
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IBM: the future is quantum

https://www.ibm.com/quantum-computing/

* Learn
Explore the fundamentals of quantum computing . ﬁ‘}t
What is Quantum Computing? } M
=

A
i

Quantum Computing at IBM
* Stayup to date
Access the latest quantum news, research and events

* Getlnvolved
Engage with the field of quantum computing

Internships
Careers
IBM 50Q, System: a cryostat
wired for a 50 qubit system.
Source:

https.//www.ibm.com/blogs/research/2017/11/the-future-is-quantum,
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Why Quantum Computing?

44 Zettabytes

Gap

8,000x
growth

We were here in 2015 A to 2020

@ 2.5 Exabytesiday

Enterprise Tradition:
Data

2 CMOS nodes

* Cognitive computing (see T.J.Watson presentation @ GTC2016)
* Machine learning will dominate the compute infrastructure
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Bits and Qubits

Classical bit: Quantum bit:
Oor1 v =cos@l0)+sing e D
Coin on table Coin in space

|

s

Digital: self-correcting Analog: sensitive to small errors
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Measurement of a superposition has the effect of forcing the system to decide on

a particular state, with probabilities determined by the amplitudes.

state |0)
with prob |ag|?

/ \\x —
f7 )
[ Lo ) ]
\ NS
A T~
h state |1)

(&[,l(l‘/: +ag|l)
with prob |a |
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(a) Superposition of States One Qubit Hadamard Gate
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Qubit Inverter Gates

Classical Inverter Quantum Pauli gates
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Interpreting the wavefunction

+ Probability interpretation
The square magnitude of the wavefunction [\P|? gives the
probability of finding the particle at a particular spatial
location

Wavefunction Probability = (Wavefunction)?

NE 2/L

o| L x 0 L x
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el Classical Physics
oy %

Quantum Physics

Ton

The difference between classical theory and quantum theory.

suljpuun J,

a4

was used by Van Vleck in his last publication, the Julian E. Mack
Lecture at his Alma Mater. the University of Wisconsin,
in 1979, (After B. Bleaney, Contemp. Phys. 25 (1984) 320.)
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XGae |l — |0 el gloy 4 oln
Bit—flip, Not — 11 0]|B]
LGate | | — L Ofel_ gl - pln
Phase—flip — 10 -1][B]
H Gate lygl= L1 L[| - _o4BlO> + a=BIL>
Hadamard =2 11 -1][B] V2o
T Gate 1TtL = (l)emom g = olo+e™BID
1 0 0 0f|la
Controlled ot _ —lo 1 o ollp| al0o)+blor+
Controlled X f— - =
CNot 00 0 1]lc dl10Y +cl11)
1 X+ —&— 0 0 1 ofld
T o oAy don
— a +C +
Shnap =0 0 1 0Of|b|_
01 0 0llc bl10) +dl11>
—k— 0 0 1||d
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Quantum mechanics vs Neural Networks

Quantum mechanics Neural Networks

wave function neuron

Superposition (coherence) inferconnections (weights)
Measurement (decoherence) evolution to attractor
Entanglement leaming rule

unitary transformations gain function (transformation)

Quantum neural networks by A Ezhov and Dan Ventura
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Communication Scheme

Classical Channel
(Internet) Copied State

[¢) = |0) + B1)
Alice /\ i
Inltlal State \ /

) = a0} + B|1}
e Entangled Source
lp) = \/—lﬂ)A\U)BJr \/—ll)A\l)B
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Measurement Setup

Benchtop DC
JPower supply

SMU (4-wire temp.
measurement) R&S FSWP Phase Noise
s

T
100 Voltage |

lectronics in Semiconductors

converters PCB.

PC/FPGAboard

/ot e

(ocarF)

Vacuum

(o Fnge

Steel pipe.

Semi-rigd
cables

Helium
vapours

‘Sample
Holder!
Oscilator PCB,

(SMP connectors &
‘Temp. sensor)

 —— Bottom view
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Current Quantum Computers

K.Pomorski

Quantum Processor

PN

Classical Controller

—

"
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chip

classical j————fSS——— classical

quantum|
chip

chip writing state
of quantum chip

chip

classical j—————fm——— classical

quantum|
chip

chip writing state
of quantum chip
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chip

classical | ——
chip

classical
chip

chip reading state
of quantum chip

quantum|
chip

chip writing st;
of quantum chip

chip

chip reading state
of quantum chip

classical j——————fEe—— classical

chip reading state
of quantum chip
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chip
quantum|
ip writing state N

chip

chip reading state
of quantum chip
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0 Desired features for programmable quantum electronics

9 Anticorrelation principle in semiconductor and in superconducting
electronics

© Quantum gates
e Two types of position dependent qubits

e Physical properties of coupled Single Electron Lines
@ Interface between semiconductor and superconducting quantum
computer

e Hybrid g-semiconductor and g-superconducting computer
@ Analogies between Cooper pair box and CMOS gbit

e Quantum logic
@ Q-Chemistry
@ Q-Communication
@ Q-Artificial Neural Network
@ Q-Al and Q-AlLife
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Main desired features of quantum programmable

electronics

Smooth interface between classical and quantum circuits
High integration and high logical density

Desired operational temperature above 1K

Electrical writting up the qubits states

Electrical reading up of qubits states

Electrical way of entangling two particles

Smooth transition from classical to quantum regime
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INSULATOR

semi-
conductor

ge applied to the gate activates
channel [CH] that brings coupling
betuieen two decoupled Q-Gots A and B

GATE
0.4
v‘ . M

ELECTRON PROBABILITY

Doubleawell
Oceupaney of well | Occupancy of well 2
[XCR P,

- /

\/‘ 2\\//

Top view of readout circuit of position dependent qubit

Occupancy of well 1
o)
1 2

Occupancy of well 2

o TS o)
1 2

semiconductor Output 2:determination of phase
difference betweena and b

metalic gate [3]

Quantum state of qubit [y is the

superposttion of |A> and [B> states |

given by refation metalic metalic Output1:

|w==alA=+b|B> alo> bl1> dm"r",;i,'mimﬁ Jal®, b1
gate [1] gate [2] ’

Electrostatic qubit by Panagiotis et al [IEEE Open Access, 2019],
Pomorski et al. [Spie 2019], Fujisawa [2004]
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Position based qubit in tight binding model

The Hamiltonian of this system is given as

o (Eo(t) tan(t) =
H(t) = (t;flz(t) Epz(t)>[X=(xl,xz)]

(Ex(t) [E1), (Eal, + E2(2) |E2) (B2l)ie=(£1. )

Ulxn)

State |L)

State |R)
Ug(®)

A
\

r
! A}
1) wg
1 A}
1

\
\

! \
<
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Classical/Logic circuits from

lectron anticor

Classical / Quantum Swap gate

Input of CNOT gate

|0>oro

Control bit or qubit for CNOT gate

|1>orl |0> oro
Quantum Swap Gate or CNOT U|:|
V(x)
Electron in trapped system of
2 wells as position
dependent qubit
|1> |o>
|0>or0 .
., ® >
Output of Swap Gate/ CNOT gate Information is diffused between 2 wells so X
[y>=a|0> +b 1>
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CHOT gate

CMOT gate
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Occupancy ocillations in position based qubit at nodes 1

and 2

Pi(t) = la(D) = 2 (@) + BO)) + 5 (a(0)P

~18(0)P) cos(( 2 E))) — cos(e(e))”
Pa(t) = [a(8) = H(a(0)1 + B(O)P) ~ 2 (|a(0)?
1800)P) cos(( 2 E)) — sine (o). )

and it oscillates periodically with frequency proportional to distance
between energetic levels E, and E; and is given as wg = E2hEl
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Bloch sphere dynamics for position based qubit

~sin(6(t)) = sin(5)(la(0)* = 8(0)[) + sin(%*)(|a(0)|* + [B(0)[?)
cos(55)(|a(0)2 — [B(0)[2) + cos(5)(I(0) 2 + 5(0) )
_,‘@ cos(© cos(9(t))2 _;(E2+E1)t
(1-e "R )(\0(0)|2—\5(0)\2)+<%(‘a0)|2 150 +'|\/1— m) | —e 12 )
. _i@ cos| )27— cos(O(t) )27— M
il+e R ))(lot(o)\Z*|B(0)|2)+'(1“0‘(0 7150 +'\\/ 2“ TP 13005 )2\+e R )

Coevolution of both © and ¢ on Bloch sphere.
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Phase rotating gate

metalic gate metalic gate metalic gate

semiconductor nanowire = al0>

circuit generating vector
potential imprinting / -
phase difference

y between a|0>and b|1>

Polarizing I
X f currentlp v
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Effective potential in piece-wise approximation and electric

Aharonov-Bohm effect (phase rotation gate)

Wavefunction phase difference across 2 deep wells controlled electrostatically is

o (Vi () = V()

Gate L with VL(t) Gate C with VC(t) Gate R with VR(t)

V(x) Coupling between and Well 2 is controlled
by Vi), Vet V), V() Velt) that are unctons of Ve, Ve, Ve,

Voc(t) oF +eo

veit) -

Ve2(t)
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Localized vs delocalized state in sy of coupled g-dots

V(x)

E4

E3 E4vsEl
population
Vei(t)— 2 exchange

E1

Vea(t)

In case of VbL(t)=Vbc(t)=VbR(t)=+cx & Well2 are decoupled

Il Il Il |
T T T T T T
-L [ +L

-Ltlo 2L+Lo

X

AC field allows for the transition of the delocalized state into localized
state and reversely !!!
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Two types of position based qubits

vod Garr 1 |pirty position based qubit] (A)
) R
— awio> [
Well 2 | 6910 <bisol1> = hy>
£l 1 Experimental prediction:
| } occupancy oscillations in
E0 two wells,
1 —
LACK OF CLEAN QUANTUM OPERATIONS ON STATES |0>and | 1>
o lack of orotective barrer from state | 1> transfer into well 1
V(x) 3 SATE
— (8)
Well 1 ell 2
E1 F———1 Experimentally prediction:
limited occupancy
£0 oscillations in two wells.
x
protective barrier from state | E1> transfer into well 1
GAT T G 2
vp| Sl ©
Well 1 v Well 2 | Experimental
prediction:
£1 for certain times essential
Iack of ocenpancy
€0 oscillations in 2 wells.
x
aio>  + b1 = ly>

[Clean position based qubit -> CLEAN OPERATIONS ON STATES 0> and |1> |

Insuch case s essenially imited oy to el 1 while b e
well 2 for certain times before tunnneling takes place. |1

imited to
01

NOT QUANTUM UNIVERSAL
SATE FOR BOTH CLEAN AND
DIRTY POSITION BASED QUBIT

< p ST et quit (G)

*“
(D) -
TRANSFER 1)
TROM N LOCALITY PRINCIPLE IS USED. .
DIRTY v "’ ‘GATES EXTEND POTENTIAL AND)
POSITION ACTION ON NEAREST EXISTING CNOT controling
BASED QUBIT QUANTUM STATE bt
INTO e
3 npur gare ol
POSITION o x i 82 wential ara of occupancy of
BASED QUBIT e o f electrun 1|
1S ONLY BY Ve, .
PROPER
SEQUENCE OF ALL O ACTION OF PHASE ROTATING GATE
ACTIVATION jerivech
OF 3 GATES. N
sep2
m)I
sep 3
\liI
sep —
o, V()A\ FILTERING AND TRANSITR Siep2 Heerre
OF MORE Bobm
B EXCITED STATE effect
FROM WELL |
XINTO WELL2 .
sep 6[FINAL| step 5 Phase imprint batween Well 1 and 2

step 0

'HADAMARD AND PHASE ROTATING GATE FOR CLEAN POSTION BASED QUEIT

Figure: [Pomorski et al, Spie 2019]
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suofounjenen usbi3

Transition between two types of position based qubits

suopunerE UeB

o
=
5]
R}
=
o
o
o3
(a)




Problem of 2 electrostatically interacting particles in

perturbative limit

In the case of 2 weakly interacting particles we have
¥(xa, X8, t) = ¥(xa, t)¥(xp, t) what gives

Rod2 [T ees(x, t)h(x, t)dx

Vv t) =
2m dx3 dmeolxa — x| + Va(xa)lta(xa, t)

= Eaa(xa, t)  (3)

R 2 [T ea(x, )l (x, t)dx

V, t) =
2m dxg Areg|xg — X| + Ve(xg)lvs(xs, t)

= Eg(t)ys(xs,t). (4)
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Case of 2 electrons in single quantum well
wavefunction of
first particle /Before—
measurement

before measurement

confining potential

V)

| wavefunction of second Z;eocﬁ Z’:tlcft]ieciz Il
particle before measurement \\ ; . Y
P2 Pl interacting were
o WP oo, having 2 energy
 w(x,P2) o o levels occupied
L | with yPD),
wavefunction . jo wavefunction . o After measurement
of second particle © of first particle -°, " state of P1 was
after measurement Y after measurement o reduced to ground
fxl}(exsgzte) of P ppie y(x,PI) pI'  state:y(x,P1')

2 particles in rectangular well with electrostatic interaction X
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J. Phys. Condens. Matter 10 (1998) L10S-L111. Printed in the UK PII: 50953-8984(98)89248-5

LETTER TO THE EDITOR

Spontaneous magnetic flux and quantum noise in an
annular mesoscopic SND junction

i
Alexandre M Zagoskini and Masaki Oshikawa} U(d’)

Physics and Astronomy Department, The University of British Columbia, 6224 Agricultural
Road, Vancouver, BC, V6T 1Z1, Canada

Received 4 November 1997

Figure 2. Effective potential and transition rates for the phase v
-— p

Figure 1. Annular SND junction, The c-axis of the d-wave superconductor is chosen 1o be
parallel to the SD boundary: f is the angle berween the SD boundary and the nodal plane of the
d-wave order parameter (0 < 8 < 7/2).

Most features present in superconducting nanostructures are presented in
single electron CMQOS technology!!!
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Case of 2 electrostatically coupled Single Electron Lines

V(x)

~
N~

Position dependent qubit

qudit 1 with NG
confiment potential

[1 electron] ~ _Lﬂ.ﬂf

1) (2) (3)
Ay oo
Minimalistic representation of 2 Single Electron Lines d  Mutual electrostatic 2 electrons
interaction confined in 2 qudits
V(x)
~

qudit 2 with ~
confiment potential a @ @)

‘ / S ‘ [1 electron] S E—
N ath x

Q4

Tu1(t) mp —| — Toua(t)

2 input single electron 2 output single
currents electron currents
Tu2(t) wp —] — Touea(t)
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Electrostatically controlled topology of graphs of coupled

g-dots in chain of semiconductor g-dots

3
3
2 extending graph by adding
branch (5',6") 2

S 5

In semiconductor one observes the anticorrelation of electrons positions
due to electrostatic repulsion and minimization of electrostatic field
energy. In superconductor one observes the anticorrelation of electric
non-dissipative currents due to magnetic field shielding. There is
charge-phase duality in anticorrelation!!!
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Programmable band structure in chain of coupled g-dots

Eigenenergies of 28ELS vs q-wells size (t=0.01 Ep=1,d=1)
Exaib

sof
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Analytical tight-binding approach for coupled g-dots

2
2E5(0) + & tara(t) tar1 (1) 0
2

toro(t) 2Ep(t) + — 0 tor1(t)
o (dp)2+(b+a)? _
At) = 2 =

tsr1(t 0 2Ep(t) + ———= tsra(t

51 (t) p( ) (d1)2+(b+a)2 sr2(t)

0 tsr1(t) tsra(t) 2Ep(t) + %

=60 X 60q11 + 63 X G3q22 + ts2(t)60 X &3 + ts1(t)G3 X G

that has only real value components Hk/ with
2

— c1+Ec2 — qi
qu = Ep(t) + = Ep(t) + 2( \/m)

d1 \/W) and Qu1(t) = ft dt'qu1(t'),
Qaz(t) = [y, dt'aza(t). TRI(E) = [, dt'tenr(t)), TR(t) = [y, dt'tira(t).

Se(t) = Trlpp(t)Loglpp(t)]] (5)

(1)) = U(t. to) [1(t0)) = e Jo 19 |y (1)

_ Ea—Ex _1(gq
g2 = C2c 2(
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Entanglement entropy

-------- ts1=0.1,ts2=0.1

ts1=0.1,ts2=0.1+0.2time

----- ts1=0.1,ts2=0.1-0.1 Cos[time]
ts1=0.1,ts2=0.1+0.2timeCos[time]-0.1time*2Sin[time]
ts1=0.1,ts2=0.1+0.1 time/( Coshl[time])*2
ts1=0.1,ts2=0.1+0.2(Sech[time])"2+0.2Tanh[time]
ts1=0.1,ts2=0.1 Exp[-time](1-time)

AN WY - - ts1=ts2=0.1 Exp[-time](1-time)

ts1=ts2=0.1 Exp[+time]

2

Electrostatic control of entanglement is demonstrated by tight-binding
model in symmetric Q-Swap gates when two hopping constants are the
same at initial state and when the state is initially in the ground state.
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Correlation function

2 2
q q
i aesenysrd ts1, ts2, PE1, PE2, PE3; PE4> PE10, PE205 PE30s PEAO, t)

B d? + (a+ b)2

C(Ecr — Ec2 =
Nt + N o =Ny = N
Nipp N — N N

V/PETV/PE2(ts1 — te2) cos[—t\/(Ec1 — Ec2)? + 4(ts1 — £2)% + dE10 — PE20)

4
V(Ear — E2)? + #H(ta — t2)?

N V/PE3\/PE4(ts1 + ts2) cos[—t\/(Ec1 — Ec2)? + 4(ts1 + t2)? + dE30 — ¢>E4o]]
V(Ecr — Ec2)? + 4(ts1 + t2)?

PE1 — PE2 PE3 — PE4
—(Ea1 — Ex2)l + (6)
\/(Ecl - Ec2)2 + 4(tsl - t52)2 \/(Ecl - Ec2)2 + 4(tsl + t52)2
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We are going to use Jaynes-Cumming Hamiltonian [?] that describes the
interactiton atom with cavity by means of electromagnetic field. In the
simplest approach the cavity Hamiltonian describing waveguide without
dissipation is represented as

1 44
Hcavity = hwc(a + aTa)’ (7)

where 4" () is the photon creation (annihilation) operator and number of
photons in cavity is given as n = 4T4. At the same we can represent the
two level qubit system

Haubir = Eg |8) (] + Ec|€) (e|. (8)
The interaction Hamilonian is of the following form
Hqubitfcavity = g(é\TU— + 50—}-)7 (9)

where 0_ = 01 — iop, 04 = 01 + ioo. The qubity-cavity interaction has
the electric-dipole nature so quasiclassicaly we can write

Haubit—caviy = d - E = g(o— + 04)(4+ 3") ~ g(d'o_ + 304).  (10)
Here we have neglected the terms g(o_4 + 0 4") and our approach is

Al 3 ayms ake; alaks
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During photon emission from qubit the energy level is lowered and
reversely during photon absorption the energy level of qubit is raised what
is seen in the term do. The system Hamiltonian is given as

H = Hcavity + Hqubit + Hqubit—cavity- 1t is not hard to construct the Hilbert
space for Jaynes-Cumming Hamiltonian. Essentially we are considering the
tensor product of qubit space and cavity space.

[9) = 16110} + 72 161) |1) + 13162} 10} + 74 |62) |1) =
M
Sr= @) =P+l D

V4

40 /59
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Electrostatic interface between semiconductor and

superconducting qubit

Josephson Junction interacting with two coupled Q-Dots semiconductor qubits

/

V(t
o Vv 4 2 3
superconductor 1 | o o o o | superconductor 2
4 channels of
Coulomb
interaction
Semiconductor
position-based qubit Q-Dot 1| [1>s [2>s | Q-Dot 2
-—U—-
VI V2(t) V(1) \Oxide Layer

K.Pomorski

Q-electronics in Semiconductors

insulator, semiconductor, metallic or weak semiconductor

Points 0, 1, 2, 3 are
associated with:

Eeo, Ee1, Ee2, Ee3 (electron)
Eno, En1, En2, En3 (hole)

System of 2 or more coupled
g-dots controlled by voltages

December 19, 2019



Tight-binding model in description of JJs coupled to

semiconductor qubit and modification of ABS in JJ

Eigenenergies of Josephson junction coupled to SEL

Energ
Eigenenergies of Josephson junction coupled to SELs( |A|=2) e

Energy F
sf —

[ 1 B I R
) P e e e | | m
d-distance - T
0 .
f—

Eigenenergies of Josephson junction coupled to SELs
Energy
101
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Electrostatically controlled superconducting and

semiconducting qubits

metalic charged gate
top view

top view
- ins“latnr -

emiconductor semiconductor

transfering
from CMOS to

superconducting SUPERCONDUCTOR COOPER PAIR
technology ... BOX

metalic gate close but not touching

side view
side view superconductor

==l —

insulator

December 19, 2019 43/
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Electromagnetic interface between semiconductor and

superconducting circuits

Bl SCENARIO I, SCENARIOII SUPERCONDUCTING
LUX QUBI O COOPER PAIR BOX

SCSET IJ JOSEPHSON
EXTERNAL JUNCTION
POLARIZING SC [Sc-JJ-pair box]

CURRENT E I H+ =SCSETJJ
I POLARIZING
VOLTAGE

— SCSET 1]

ELECTROSTATIC O
rl QUBITS NORMAL METAL

INTERFACE BETWEEN SUPERCONDUCTOR AND SEMICONDUCTOR QUBITS

[ K.Pomorski, P.Giounanlis, E.Blokhina, D.Leipold, P.Peczkowski, Robert
Bogdan Staszewski, From two types of electrostatic position-dependent
semiconductor qubits to quantum universal gates and hybrid
semiconductor-superconducting quantum computer, Proc. SPIE 11054,
2019]
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Quantum chemistry in semiconductor lattices
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Quantum Communication
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Quantum Communication over Long Line
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Quantum Internet

Concept of quantum internet implemented in position based qubits with use of waveguides of any topology
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Quantum Neural Network
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uantum universal gates. It can be controlled

‘Concept of quantum and classical single clectron neural network in CMOS. It can
voltages applied to C1,..,C12, .., C22 gates. Additionally one can use external ma;

by Krzysztof Pomorski, 16 Nov 2018 Q-Neural Network can mimic any physical system of N bodies.
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Reconfigurable Quantum Neural Networks
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Quantum chemistry in semiconductor lattices
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. . AS CONGLOMERATION OF OTHER CHARGED PARTICLES CAPTURED BY
SINGLE ELECTRON RADAR CAN Bl
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PROPER OPERATION OF QUANTUM AGENTS REQUIRES CONSTANT FLOW OF ELECTRONS AS INPUT SIGNAI
AND CONSTANT ANALYSIS OF OUTPUT SIGNALS.
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Quantum accelerato

detection qubit 2

qubit 3 collision zone
of two

/ injected
/Blelctmns

detection qubit 1
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/
injected
electron 2

everything is in Vaenn V2ell Viell
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injected electron 1 semiconductor
qubit
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semiconductor \ «
qubit detection qubit 4  detection qubit5  detection qubit 6
State of 6 qubits is affected and measured after collision of 2 high Acceleration area for
electron

energetic electrons.
General view on the mikro-accelerator implemented in cryogenic CMOS
[Krzysztof Pomorski]
Various experiements can be conducted for various energies of colliding electrons.
Measurement of electron entangled state after collision can be attempted.
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Previous experiments

Pulse generator
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New company: Quantum Hardware Systems (QHS)

http : //www.quantumhardwaresystems.com/

Mission: Linking existing quantum and classical old and new technologies
in realistic fashion ...

K.Pomorski (UCD)
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The End
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