ShanghAI Lecture Series
15 November 2012, 10:00 AM CET

Design Principles for Intelligent Rehabilitation Robots

Robert Riener
Sensory-Motor Systems Lab
Institute of Robotics and Intelligent Systems, ETH Zurich
University Hospital Balgrist, University of Zurich
Disadvantage of Manual Training

For the Therapist
- Physically exhausting
- Ergonomically inconvenient

For the Patient
- Limited training duration
- Gait pattern not optimal

SCI Center, Balgrist
Human-Robot Gait Rehabilitation
Gait Rehabilitation "Robots"

GaitTrainer G-EOM

Haptic Walker HAL

Lopes Auto ambulator
ARMin III

Exoskeletal Robot with 7 Degrees of Freedom

ETH Zurich/Balgrist, Hocoma AG
Nef, Riener et al. 2006-2011
Arm Rehabilitation Robots

MIT Manus

Bi-Manu-Track

MGA

Salford PMA

Haptic Master, GENTLE/s

PERCRO Exoskeleton

KIST Arm
Sensory-Motor Interaction

Focus: Exoskeletons for Clinical Rehabilitation
Setups: Lokomat, ARMin
Sensory-Motor Characteristics

To Be Known about Human Physiology

- Nervous system is plastic
Sensory-Motor Characteristics

To Be Known about Human Physiology

- Nervous system is plastic
To Be Known about Human Physiology

- Nervous system is plastic
- Participation increases plasticity
Passive vs Active Training

Limitations of Passive Training of Healthy Subjects

• Physical guidance hinders motor learning of walking balance
 Domingo & Ferris, 2009

• High frequency guiding is detrimental for learning of arm movements (guidance hypothesis)
 Weinstein et al. 1994; Marchal-Crespo & Reinkensmeyer 2008

Assist-as-Needed Training (ANN)

• AAN shows higher level of recovery step number, periodicity, and consistency (27 mice)
 Cai et al. 2006
Lokomat: Patient-Cooperative Control

Path Control

- Robot behaves assistive, corrective or transparent, when needed
- Free timing for patient
- Support patient, but do not restrict patient

Path Control Increases Participation

Muscle Activity

Heart Rate

- Normalized muscle activity (BF)
- Position control
- Path control

Relative increase of heart rate

Init. loading
Mid stance
Term. stance
Pre swing
Init. swing
Mid Swing
Term. swing

11 incomplete SCI subjects

Position control
Path control
Sensory-Motor Characteristics

To Be Known about Human Physiology

- Nervous system is plastic
- Participation increases plasticity
- Repetition without repetition
Path Control Enhances Variability

“Repetition without Repetition”

Position Control

Path Control
Sensory-Motor Characteristics

To Be Known about Human Physiology

- Nervous system is plastic
- Participation increases plasticity
- Repetition without repetition
- Provide large ROM, avoid joint stress
Main Problem with Exoskeletons

Alignment of Robotic and Human Joints
Main Problem with Exoskeletons

Alignment of Robotic and Human Joints
Main Problem with Exoskeletons

Alignment of Robotic and Human Joints
Humerus Motion
Humerus Motion

\[\Delta y = 124 \text{ mm} \]

\[\Delta x = 28 \text{ mm} \]

Body height: 1.7 m
ARMin II Shoulder Kinematics

Vertical shoulder displacement

Vertical displacement of main drive
ARMin III: Novel Shoulder Actuation
ARMin III: Novel Shoulder Actuation
ARMin III: Novel Shoulder Actuation

- Axis 1
- Axis 2
- Axis 3
- Axis 4
- Fixation screw
- Force/torque sensor
- 2 Laser pointers

\(\alpha \)
Sensory-Motor Characteristics

To Be Known about Human Physiology

- Nervous system is plastic
- Participation increases plasticity
- Repetition without repetition
- Provide large ROM, avoid joint stress
- Each patient is different
ARMin III: Adjustments
Lokomat: Adaptive Force Field

Adapt Field with a Iterative Learning Controller

Reference trajectory

Actual trajectory
To Be Known about Human Physiology

- Nervous system is plastic
- Participation increases plasticity
- Repetition without repetition
- Provide large ROM, avoid joint stress
- Each patient is different
- Motivation increases plasticity
Human-Robot Cooperation

- Audiovisual & haptic displays
- Task specific controller
- Force and position recordings
- Psychophysiological recordings

- Stimuli
To Be Known about Human Physiology

• Nervous system is plastic
• Participation increases plasticity
• Repetition without repetition
• Provide large ROM, avoid joint stress
• Each patient is different
• Motivation increases plasticity
• Train activities of daily living
Task Specific Training

Chronic Stroke Patient (FMA=26)
Task Specific Training
Conclusion and Outlook

Taking into Account Human Physiology

- Robots can allow efficient & intensive & individual training
- Robot can cooperate to keep the patient active
- Robots can motivate the patient

Chances

- Improve health status and quality of life (patients)
- Reduce workload of clinical staff (therapists, nurses)

To do

- Clinical evaluation studies on patients