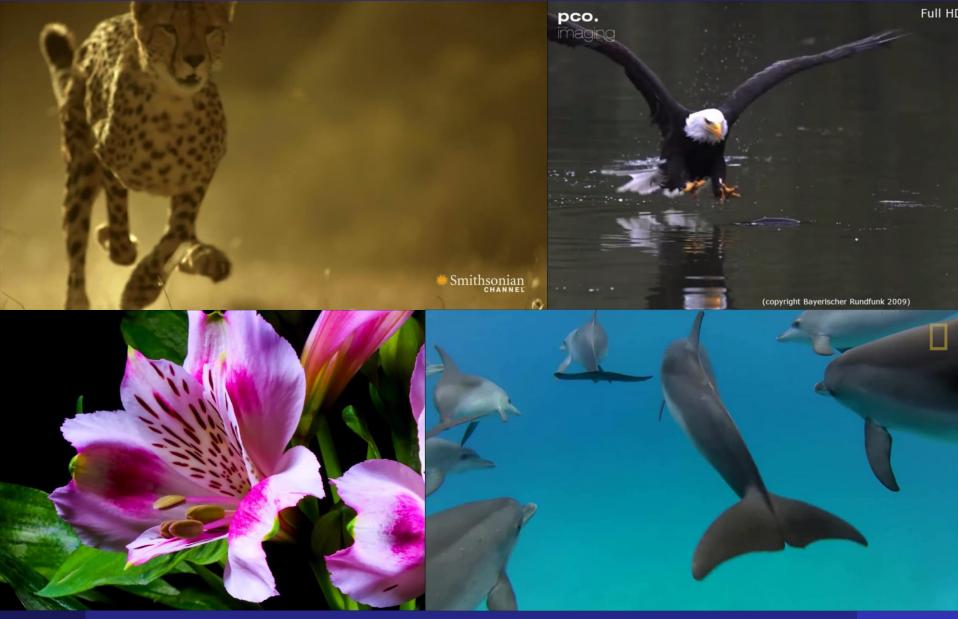
Evolutionary Developmental Soft Robotics

Towards adaptive and intelligent machines following Nature's approach to design

Francesco Corucci, PhD



Motivations: diversity, complexity, sophistication

Motivations: intelligent and adaptive behavior

Camouflage

Creativity

Skills

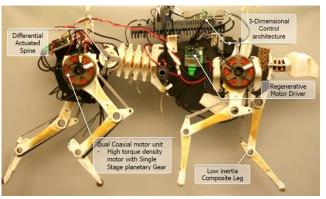
Reasoning, cognition

Motivations

Can we *automatically* design a wealth of artificial systems that are as *sophisticated, adaptive, robust, intelligent,* for a wide variety of tasks and environments?

F. Corucci

Evolutionary Developmental Soft Robotics


Adaptivity, robustness, intelligence

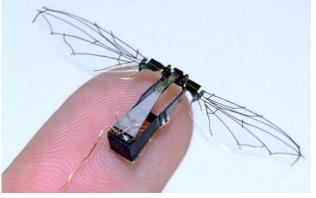
→ Keep failing outside controlled environments (where they are most needed)

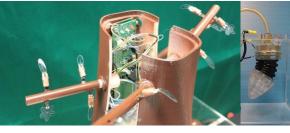
DARPA Robotics Challenge Finals, 2015

Biologically inspired robotics (biorobotics)

Cheetah robot, MIT

Bat robot, Brown




OCTOPUS, SSSA

Lampetra, SSSA

RoboBees, Harvard

Plantoid robot, IIT

Evolutionary Developmental Soft Robotics

Biologically inspired robotics: Soft Robotics

Photo: Massimo Brega, The Lighthouse

Biologically inspired robotics: pros and cons

• Pros:

- <u>New technologies</u> and design principles
- <u>New knowledge</u> related to the biological model (sometimes)
- Insights related to the intelligence of particular species (sometimes)

• Cons:

- Requires a lot of <u>human knowledge</u> and <u>careful engineering</u>
- Focuses on <u>very specific</u> organisms/behaviors
- Does not necessarily:
 - Generalize to arbitrary tasks and environments
 - Help realizing general forms of artificial intelligence

What do all these things have in common?

They are the result of an **EVOLUTIONARY PROCESS**

F. Corucci

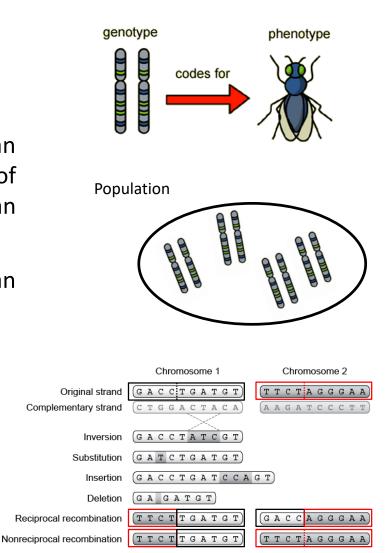
Evolutionary Developmental Soft Robotics

A paradigm shift in bioinspiration

Instead of replicating some of the <u>solutions</u> found by Nature, why not imitating <u>Nature's approach to design</u> instead? \rightarrow <u>EVOLUTION</u>

From replicating natural <u>products</u>, to replicating the natural <u>processes</u> which gave rise to them

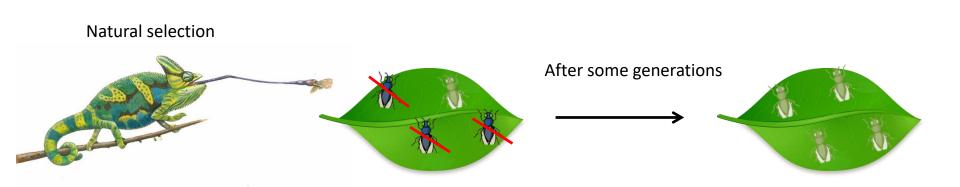
\rightarrow <u>Ultimate form of bioinspiration</u>

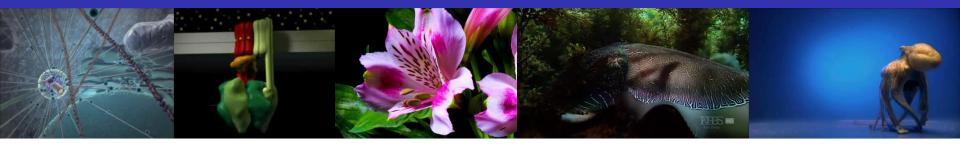


Evolutionary Developmental Soft Robotics

Evolution: Nature's approach to design

Ingredients:


- A way to *encode* the observable traits of an organism (*phenotype*) into a compact set of instructions (*genotype*, «blueprint» of an organism)
- A <u>population</u> of diverse individuals which can <u>reproduce</u> among themselves
- <u>Mechanisms to manipulate the genetic material</u> upon reproduction (<u>genetic recombination</u>, <u>mutation</u>)
 - Error prone:
 - \rightarrow <u>Random variation</u>
 - \rightarrow <u>Novel traits</u>

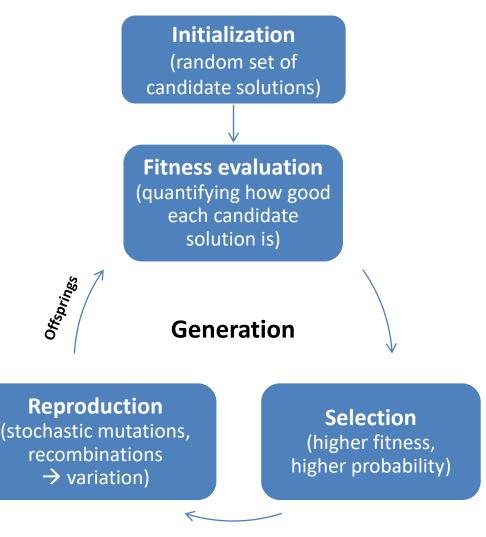

Evolution: Nature's approach to design

• A <u>selection criterion</u>:

- At each *generation*, individuals that are <u>better adapted to the environment</u> (*fitness*) have higher chance of:
 - Surviving and reproducing
 - Propagating their genetic material (and, thus, their traits) to subsequent generations

Evolution: basic algorithmic principle

Trial-and-error procedure in which innovation is driven by the non-random selection of random variations


F. Corucci

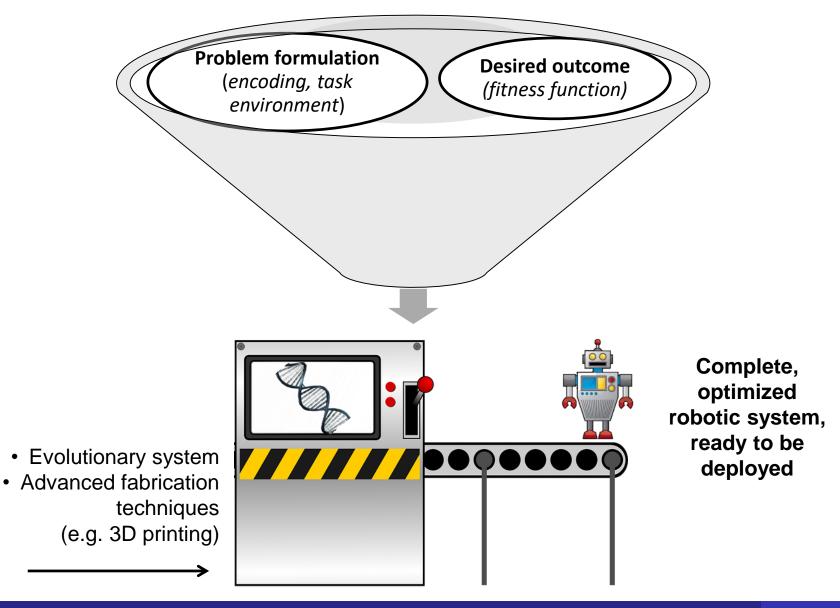
Evolutionary Developmental Soft Robotics

Evolutionary Algorithms (EAs)

Class of population-based, iterative, stochastic <u>optimization</u> <u>algorithms</u> inspired by this algorithmic principle


- Fitness → A function (objective) to be maximized/minimized
- Individuals → Candidate solutions
- Encoding → Data structure (e.g. bitstring, network, ...)
- Reproduction → Stochastic operators manipulating the candidate solutions (e.g. flip a bit with a given probability)

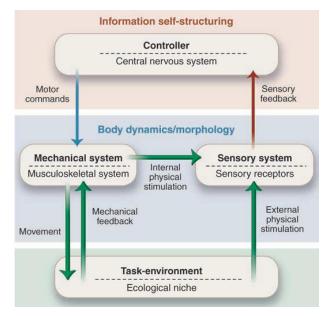
Parents


Evolutionary Robotics (evo-robo)

- <u>Core idea</u>: to apply evolutionary algorithms in order to optimize robots
- Example:
 - Fixed morphology
 - A population of controllers is evolved
 - <u>Fitness</u>: traveled distance

From: YouTube (Arseniy Nikolaev, virtual spiders evolution)

Implications: design automation technique



- In evo-robo, <u>EAs are usually coupled with powerful encodings</u>, which allow to efficiently represent (and thus <u>co-evolve/co-optimize</u>) <u>complex characteristics</u> such as:
 - Morphology
 - Controller
 - Sensory system
 - ...

Implications: Embodied Cognition

The possibility to co-optimize all of these aspects (and the <u>body</u> in particular) is very appealing in light of recent trends in AI (<u>Embodied Cognition</u>)

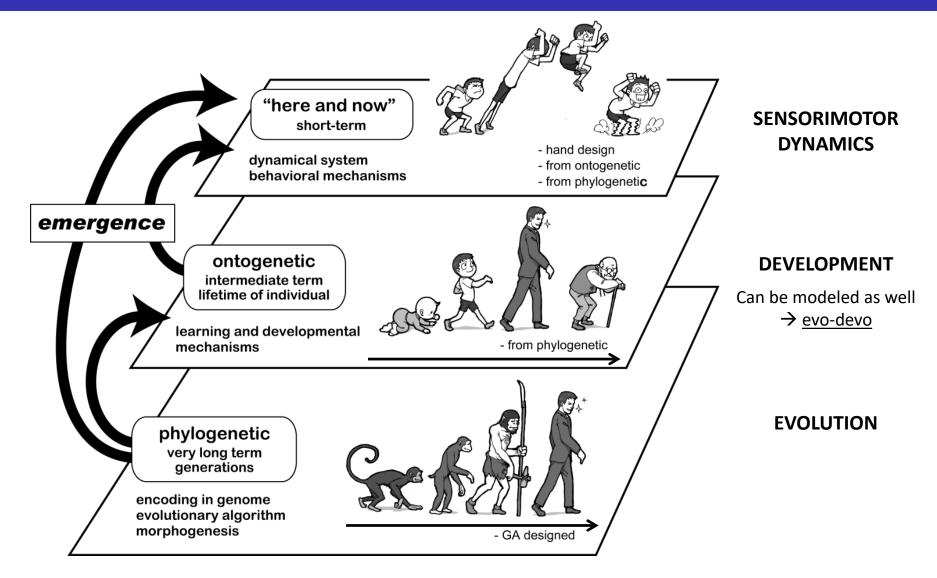
Intelligent and adaptive behavior <u>starts</u> <u>within the body</u>, and its dynamic interplay with brain and environment (*embodiment*)

Pfeifer et al. *Self-Organization, Embodiment, and Biologically Inspired Robotics,* Science (2007) A suitable morphology <u>can greatly simplify</u> <u>control</u> by performing implicit/explicit computation (<u>morphological computation</u>)

Mc Geer 1990, Passive Dynamic Walker Pfeifer and Bongard, *How the body shapes the way we think (2006)*

A **<u>soft</u>** body, in particular, is thought to <u>facilitate the emergence of these</u> <u>phenomena</u>:

- <u>Better mean of interaction</u> between brain and environment (richer proprioceptive and exteroceptive stimulation)
- <u>Greater computational power</u> (Hauser et al. 2011, Nakajima et al. 2013)

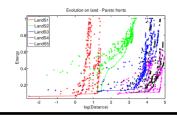

\rightarrow We are going to evolve <u>soft</u> robots (*evo-SoRo*)

Rolf Pfeifer, Hugo Gravato Marques, and Fumiya lida. Soft robotics: the next generation of intelligent machines. In Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, pages 5{11. AAAI Press, 2013.

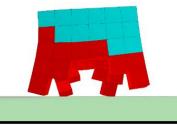
Helmut Hauser, Auke J Ijspeert, Rudolf M Fuchslin, Rolf Pfeifer, and Wolfgang Maass. *Towards a theoretical foundation for morphological computation with compliant bodies*. Biological cybernetics, 105(5-6):355-370, 2011.

Kohei Nakajima, Helmut Hauser, Rongjie Kang, Emanuele Guglielmino, Darwin G Caldwell, and Rolf Pfeifer. A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm. Front. Comput. Neurosci, 7(10.3389), 2013.

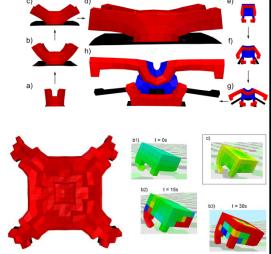
A comprehensive bottom-up approach

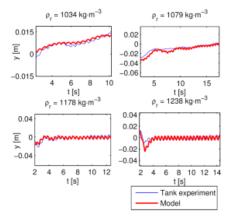


From: Pfeifer, Bongard, How the body shapes the way we think, MIT press


Evo-devo-soro: some case studies

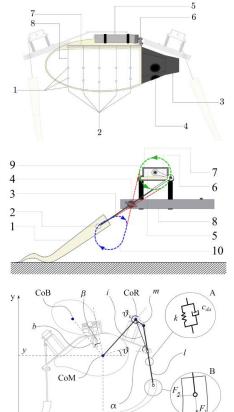
SOLVING COMPLEX **EXPLORING THE DESIGN STUDYING ANIMALS OPTIMIZATION PROBLEMS** SPACE OF A Evolution and adaptation of a **BIOINSPIRED ROBOT** Genetic parameters batoid-inspired wing in estimation and locomotion of Novelty-based evolutionary different fluids design of an aquatic soft an aquatic soft robot robot = 1178 kr Artificial Evolution Manipulates the system in simulation Prototypes Test those solutions in the real world Generalize solutions that proved to be feasible and effective Abstract and synthesize effective solutions **STUDYING THE EVOLUTION OF SOFT LOCOMOTION STUDYING THE** Free-form evolution: effects **EVOLUTION OF**


of material properties and environmental transitions


DEVELOPMENT AND MORPHOLOGICAL COMPUTATION

SOLVING COMPLEX OPTIMIZATION PROBLEMS

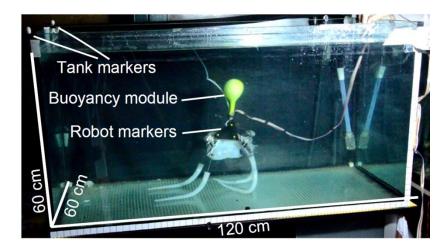
Genetic parameters estimation and locomotion of an aquatic soft robot


PoseiDRONE robot

A. Arienti et al. "Poseidrone: design of a soft-bodied ROV with crawling, swimming and manipulation ability." OCEANS, 2013. IEEE, 2013.

- Soft, octopus-inspired, underwater drone
- Dynamics model of its locomotion was available
- **Goal**: use the model to identify faster gaits
- Problem:
 - The model struggled to describe the behavior of the robot due to many unknown model parameters

→ Evolutionary Algorithms were applied to «ground» the model into physical reality through parameters estimation

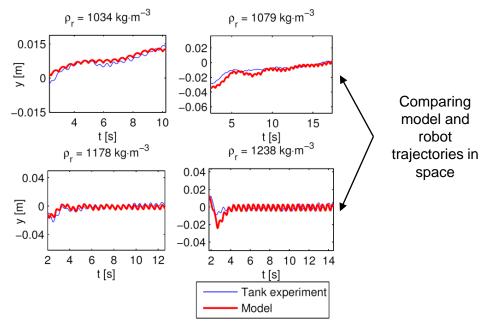


Genetic parameters estimation

• Genetic parameters estimation:

Find the set of unknown model parameters that minimize the model-robot discrepancies through Genetic Algorithms

$$\boldsymbol{G} = (k, dr, \mu_s, \mu_d, m_{a_c}, J, \Lambda_t, \Lambda_r, \lambda_t, \lambda_n)$$

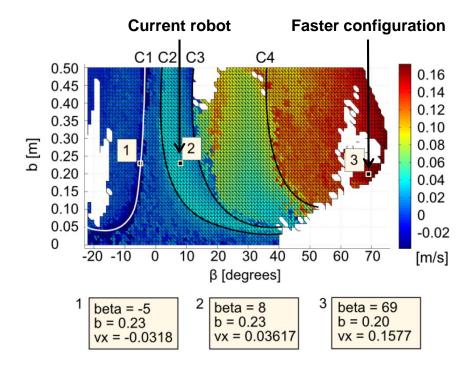

$$f(\boldsymbol{G}) = \begin{cases} P_{fall} \text{ if robot fell,} \\ \sum_{i=1}^{4} \left(\frac{f_T - f_G}{f_T}\right)^2 \text{ otherwise,} \end{cases}$$

- F. Giorgio-Serchi, A. Arienti, <u>F. Corucci</u>, M. Giorelli, C. Laschi, "Hybrid parameter identication of a multi-modal underwater soft robot", Bioinspiration & Biomimetics 12.2 (2017): 025007.
- M. Calisti, <u>F. Corucci</u>, A. Arienti, C. Laschi, "Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot", Bioinspiration & Biomimetics 10.4 (2015): 046012
- M. Calisti, <u>F. Corucci</u>, A. Arienti, C. Laschi, "Bipedal walking of an octopus-inspired robot", Biomimetic and Biohybrid Systems - Living Machines 2014, Springer Lectures Notes in Articial Intelligence, 2014

Genetic parameters estimation: results

- After this procedure, the model <u>faithfully represents the overall dynamics of</u> <u>the robot</u> in various operative conditions
- <u>Can be used</u> for several purposes (mission planning, model-based controllers, etc.)

	Bound	Value
$k \ [N/m]$	[25, 400]	205.8
dr	[0, 1.5]	1.1
μ_s	[0.6, 0.9]	0.77
μ_d	[0.6, 0.9]	0.61
$m_{a_c} \ [kg]$	[0.755, 7.55]	6.65
$J \ [kg \ m^2]$	$\left[0.0003, 0.018 ight]$	0.018
$\Lambda_t \; [kg/m]$	[0.11, 145]	63.6
$\Lambda_r \; [kg/m]$	[0.0001, 1]	0.068
$\lambda_t \; [kg/m]$	[0, 0.08]	0.026
$\lambda_n \ [kg/m]$	[0, 0.3]	0.033

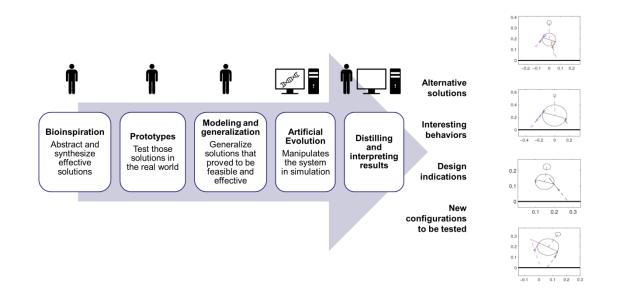

- F. Giorgio-Serchi, A. Arienti, <u>F. Corucci</u>, M. Giorelli, C. Laschi, "Hybrid parameter identication of a multi-modal underwater soft robot", Bioinspiration & Biomimetics 12.2 (2017): 025007.
- M. Calisti, <u>F. Corucci</u>, A. Arienti, C. Laschi, "Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot", Bioinspiration & Biomimetics 10.4 (2015): 046012.
- M. Calisti, <u>F. Corucci</u>, A. Arienti, C. Laschi, "Bipedal walking of an octopus-inspired robot", Biomimetic and Biohybrid Systems - Living Machines 2014, Springer Lectures Notes in Articial Intelligence, 2014

Evolutionary Developmental Soft Robotics

Model exploitation: examples

So far the it has been used to:

- Identify faster morphological configurations: some correctly transferred to the real world \rightarrow Considerable performance increase (almost four times faster)
- Explore the viability of paradigms of <u>adaptive morphology</u> (morphosis/morphing)



Calisti, M., <u>Corucci, F.</u>, Arienti, A., & Laschi, C. (2015). Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot. *Bioinspiration & Biomimetics*, *10*(4), 046012.

EXPLORING THE DESIGN SPACE OF A BIOINSPIRED ROBOT

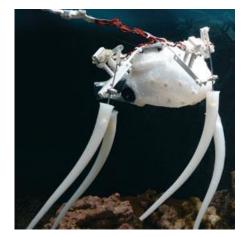
Novelty-based evolutionary design of an aquatic soft robot

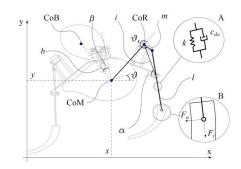
Exploring the design space of a bioinspired robot

Goals:

 Perform a more <u>extensive exploration of the design space</u> of the PoseiDRONE robot

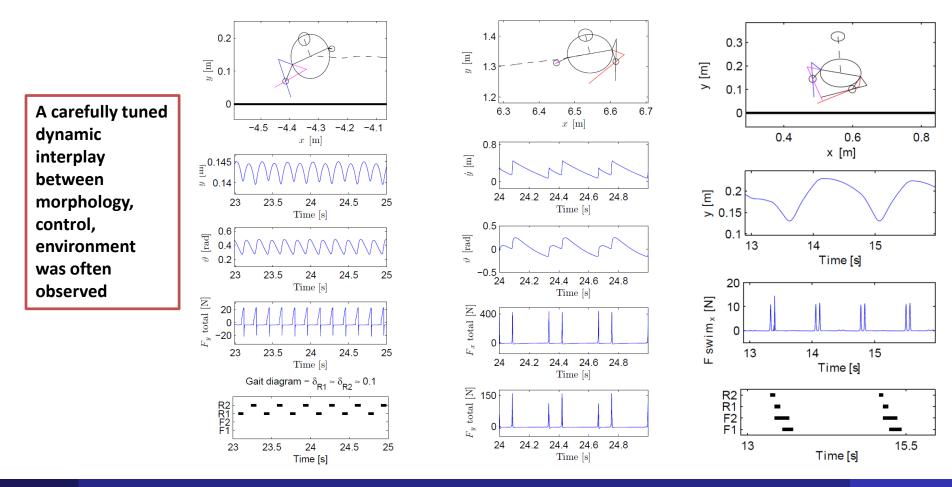
Setup:


- Model was generalized and fed into an evolutionary system
- <u>Novelty-based</u> algorithm was used to explore the design space


 \rightarrow Instead of rewarding individuals performing *better*, rewards individuals performing <u>differently</u>

Corucci, F., Calisti, M., Hauser, H., & Laschi, C. (2015, July). Novelty-based evolutionary design of morphing underwater robots. In Proceedings of the 2015 annual conference on Genetic and Evolutionary Computation (pp. 145-152). ACM.

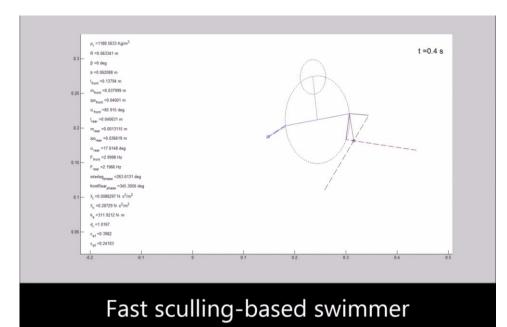
Corucci, F., Calisti, M., Hauser, H., & Laschi, C. (2015, July). Evolutionary discovery of self-stabilized dynamic gaits for a soft underwater legged robot. In Advanced Robotics (ICAR), 2015 International Conference on (pp. 337-344). IEEE.



Exploring the design space of a bioinspired robot

Results – Embodiment:

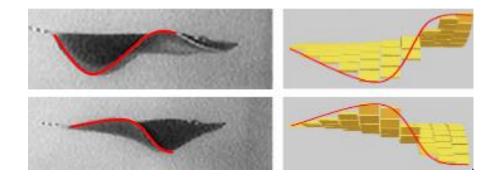
An in-depth analysis of evolved morphologies and behaviors revealed that <u>artificial evolution was able to systematically discover and exploit *embodiment*</u>


Exploring the design space of a bioinspired robot

Results – Design indications:

- Basic robot morphology was designed to <u>crawl on the sea bed</u>, but...
- … <u>Artificial Evolution suggested a different locomotion modality that turned out to be</u> <u>much more effective</u> (fast strokes → sculling-based swimming)
- It did so by <u>reinterpreting (exapting)</u> a human-devised leg mechanism originally <u>conceived for crawling to a new purpose</u>

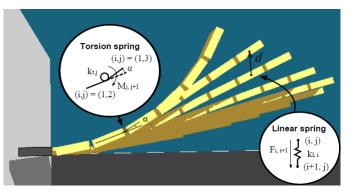
\rightarrow Evolutionary creativity


 Evolved designs exhibited <u>several</u> <u>other symmetries and regularities</u> which informed human designers

STUDYING ANIMALS

Evolution and adaptation of a batoid-inspired wing in different fluids

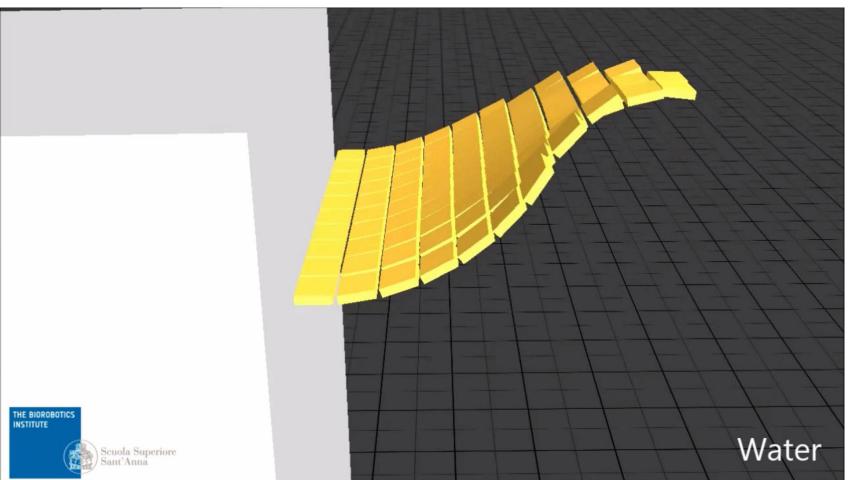
Evolution and adaptation of a soft fin


Goal:

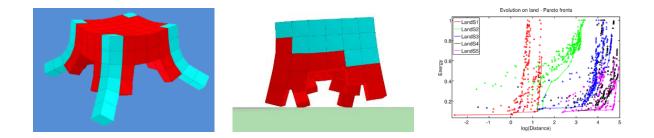
- Study the <u>embodied intelligence of fishes</u> such as the manta ray, as a <u>paradigm for underwater soft</u> <u>robotics</u>
- Study the <u>relevant factors for the adaptation of a</u> <u>manta-inspired fin to different fluids</u>

Approach:

- Developing a <u>simplified simulated model</u>
- <u>Co-evolving morphology and control</u> in different fluids
- <u>Fitness</u>: fluid dynamics metric associated with swimming efficiency

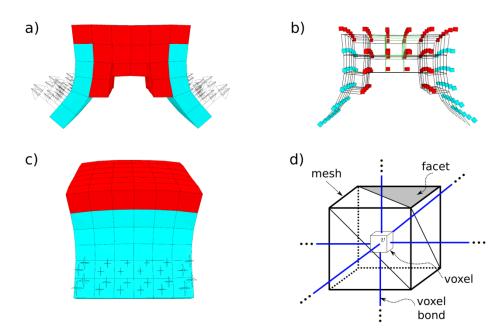

Cacucciolo, V.*, <u>Corucci, F.</u>*, Cianchetti, M., & Laschi, C. (2014, July). Evolving optimal swimming in different fluids: a study inspired by batoid fishes. In *Conference on Biomimetic and Biohybrid Systems* (pp. 23-34). Springer International Publishing. (*<u>equal contribution</u>)

Evolution and adaptation of a soft fin


Cyberbotics **Webots** simulator

Cacucciolo, V.*, <u>Corucci, F.</u>*, Cianchetti, M., & Laschi, C. (2014, July). Evolving optimal swimming in different fluids: a study inspired by batoid fishes. In *Conference on Biomimetic and Biohybrid Systems* (pp. 23-34). Springer International Publishing. (*<u>equal contribution</u>)

STUDYING THE EVOLUTION OF SOFT LOCOMOTION


Goals:

- Investigate the <u>free-form evolution of soft locomotion in both aquatic and</u> <u>terrestrial environments</u>
- Investigate the <u>effects of different material properties</u> on:
 - Evolved <u>morphologies</u> and <u>behaviors</u>
 - <u>Energy-performance trade-offs</u>
- Investigate the effects of <u>environmental transitions water \leftrightarrow land:</u>
 - Benefits of evolving swimming for walking?
 - Benefits of evolving walking for swimming?
- <u>Corucci, F.</u>, Cheney, N., Giorgio-Serchi, F., Bongard, J., & Laschi, C. (2017). Evolving soft robots in aquatic and terrestrial environments: effects of material properties and environmental transitions (under review, arXiv preprint arXiv:1711.06605. ISO 690, 2017)
- <u>Corucci, F.</u>, Cheney, N., Lipson, H., Laschi, C., & Bongard, J. (2016). Evolving swimming soft-bodied creatures. In ALIFE XV, The Fifteenth International Conference on the Synthesis and Simulation of Living Systems, Late Breaking Proceedings (p. 6-7).

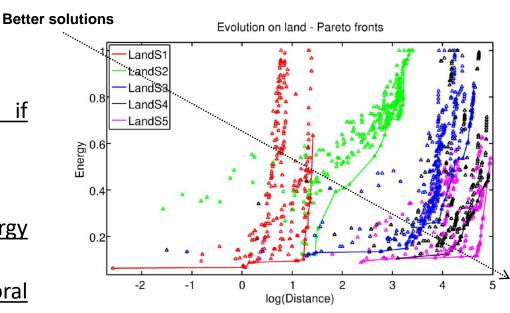
Evolving soft robots in aquatic and terrestrial environments

Setup:

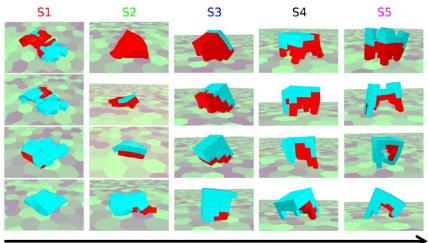
- Powerful soft robot simulator (VoxCAD, Hiller et al. 2014)
- <u>Multi-objective</u> evolutionary <u>algorithm</u>
- Powerful <u>developmental</u> <u>encoding</u> (Compositional Pattern Producing Networks, CPPNs) (Stanley, 2007)

- <u>Corucci, F.</u>, Cheney, N., Giorgio-Serchi, F., Bongard, J., & Laschi, C. (2017). Evolving soft robots in aquatic and terrestrial environments: effects of material properties and environmental transitions (under review, arXiv preprint arXiv:1711.06605. ISO 690, 2017)
- <u>Corucci, F.</u>, Cheney, N., Lipson, H., Laschi, C., & Bongard, J. (2016). Evolving swimming soft-bodied creatures. In ALIFE XV, The Fifteenth International Conference on the Synthesis and Simulation of Living Systems, Late Breaking Proceedings (p. 6-7).

Optimization: (multi-objective)

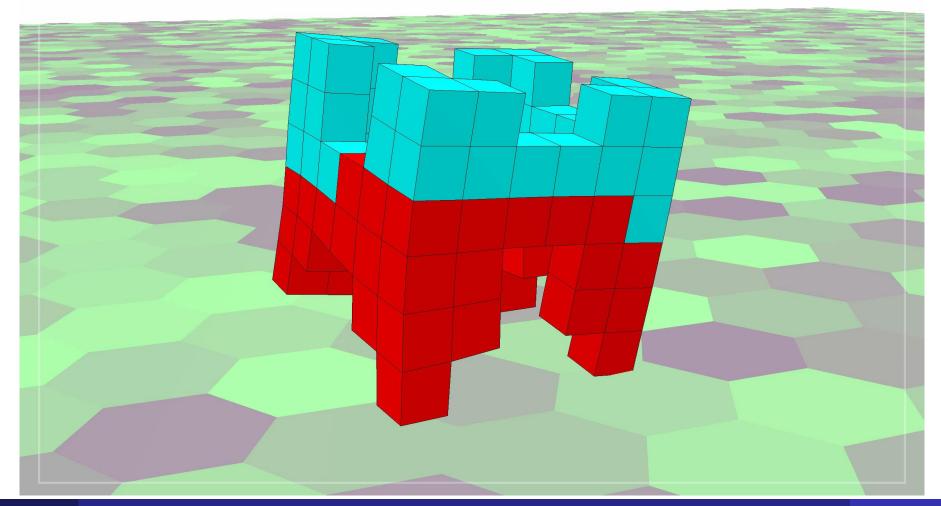

- Maximize traveled distance
- Minimize actuated tissue
- Minimize employed material

Experiments:

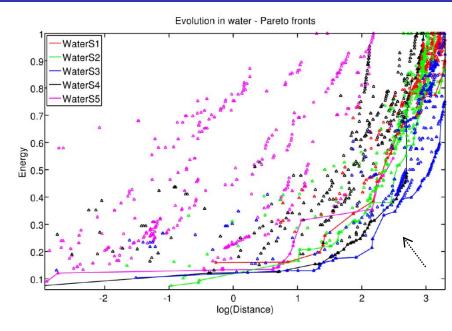

- Evolution on <u>Land</u> for <u>five different material stiffnesses</u> (S1 – softest, ..., S5 – stiffest)
- Evolution in <u>Water</u> (S1, ..., S5)
- Land \rightarrow Water (switching halfway during evolution, stiffness S3)
- <u>Water \rightarrow Land</u> (switching halfway during evolution, stiffness S3)
- <u>Corucci, F.,</u> Cheney, N., Giorgio-Serchi, F., Bongard, J., & Laschi, C. (2017). Evolving soft robots in aquatic and terrestrial environments: effects of material properties and environmental transitions (under review, arXiv preprint arXiv:1711.06605. ISO 690, 2017)
- <u>Corucci, F.</u>, Cheney, N., Lipson, H., Laschi, C., & Bongard, J. (2016). Evolving swimming soft-bodied creatures. In ALIFE XV, The Fifteenth International Conference on the Synthesis and Simulation of Living Systems, Late Breaking Proceedings (p. 6-7).

Evolution on land – Results:

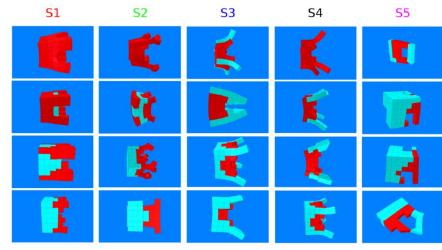
- Terrestrial locomotion <u>cannot evolve if</u> <u>the provided material is too soft</u> (S1)
- Stiffer robots (S2 $\rightarrow ... \rightarrow$ S5):
- → <u>Better performances</u> and <u>lower energy</u> <u>consumption</u>
- → Increase in morphological and behavioral complexity
 - → Simpler robots, <u>inching</u>, <u>crawling</u>
 - → More <u>complex morphologies and</u> <u>coordinated gaits</u>
- <u>Corucci, F.</u>, Cheney, N., Giorgio-Serchi, F., Bongard, J., & Laschi, C. (2017).
 Evolving soft robots in aquatic and terrestrial environments: effects of material properties and environmental transitions, (under review, arXiv preprint arXiv:1711.06605. ISO 690, 2017)
- <u>Corucci, F.</u>, Cheney, N., Lipson, H., Laschi, C., & Bongard, J. (2016). Evolving swimming soft-bodied creatures. In ALIFE XV, The Fifteenth International Conference on the Synthesis and Simulation of Living Systems, Late Breaking Proceedings (p. 6-7).

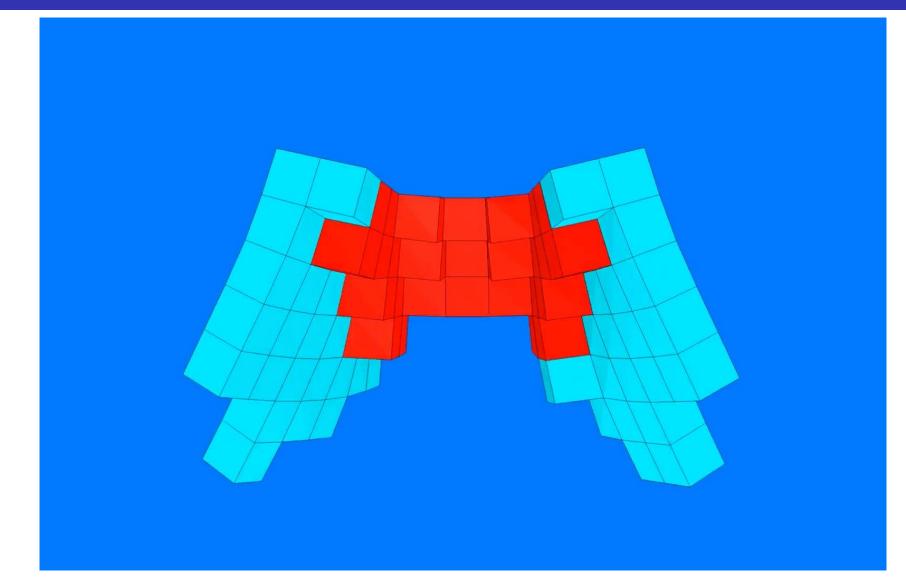


Pareto fronts sampling (rows order: decreasing energy usage):


Morphological and behavioral complexity increase

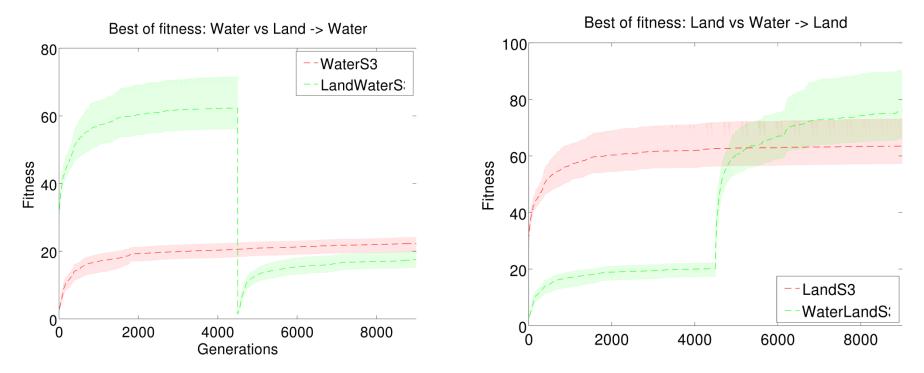
- \rightarrow Both morphology and control are evolved from scratch
- → Stiffness is beneficial on land




Evolution in water – Results:

- More complex energy-performance tradeoffs
- <u>Best energy-performance tradeoffs</u> are achieved for an <u>intermediate stiffness</u> <u>value (S3)</u>
- → In water softness appears to be more useful
- <u>Corucci, F.</u>, Cheney, N., Giorgio-Serchi, F., Bongard, J., & Laschi, C. (2017). Evolving soft robots in aquatic and terrestrial environments: effects of material properties and environmental transitions (under review, arXiv preprint arXiv:1711.06605. ISO 690, 2017)
- <u>Corucci, F.</u>, Cheney, N., Lipson, H., Laschi, C., & Bongard, J. (2016). Evolving swimming soft-bodied creatures. In ALIFE XV, The Fifteenth International Conference on the Synthesis and Simulation of Living Systems, Late Breaking Proceedings (p. 6-7).

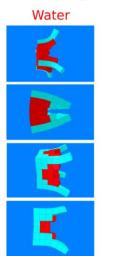
Pareto fronts sampling (rows order: decreasing energy usage):

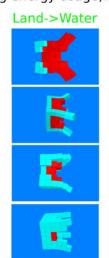


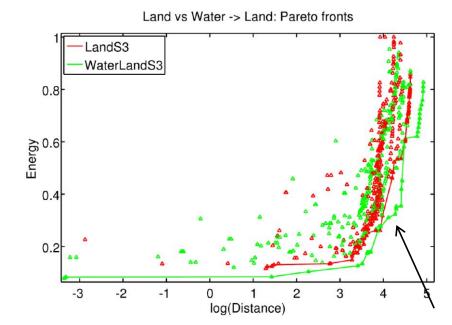
Corucci, F., Cheney, N., Giorgio-Serchi, F., Bongard, J., & Laschi, C. (2017). Evolving soft robots in aquatic and terrestrial environments: effects of material properties and environmental transitions (under review, arXiv preprint arXiv:1711.06605. ISO 690, 2017)

Transition experiments - Results: an asymmetry is observed

Evolving terrestrial locomotion <u>first does</u> <u>not help</u> to later evolve swimming


Evolving aquatic locomotion first <u>seems to</u> <u>help</u> later evolving walking



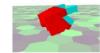

- <u>Corucci, F.</u>, Cheney, N., Giorgio-Serchi, F., Bongard, J., & Laschi, C. (2017). Evolving soft robots in aquatic and terrestrial environments: effects of material properties and environmental transitions (under review, arXiv preprint arXiv:1711.06605. ISO 690, 2017)
- <u>Corucci, F.</u>, Cheney, N., Lipson, H., Laschi, C., & Bongard, J. (2016). Evolving swimming soft-bodied creatures. In ALIFE XV, The Fifteenth International Conference on the Synthesis and Simulation of Living Systems, Late Breaking Proceedings (p. 6-7).

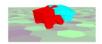
Water vs Land -> Water: Pareto fronts WaterS3 LandWaterS3 0.8 9.0 Energy 0.4 0.2 2 -5 -2 0 3 -3 -1 .1 log(Distance)

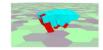
Pareto fronts sampling (rows order: decreasing energy usage):

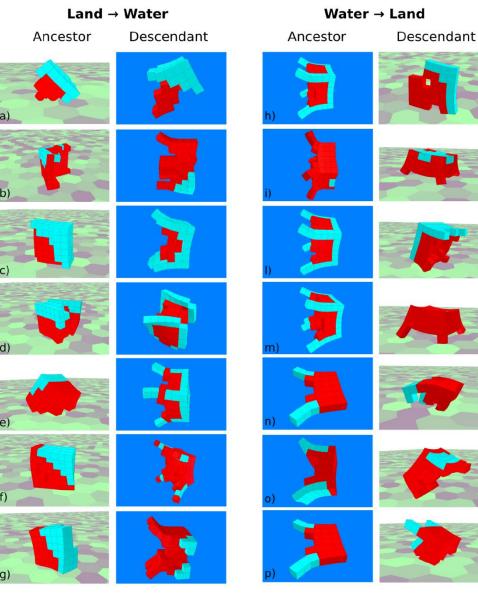
Pareto fronts sampling (rows order: decreasing energy usage):

Land


Water->Land





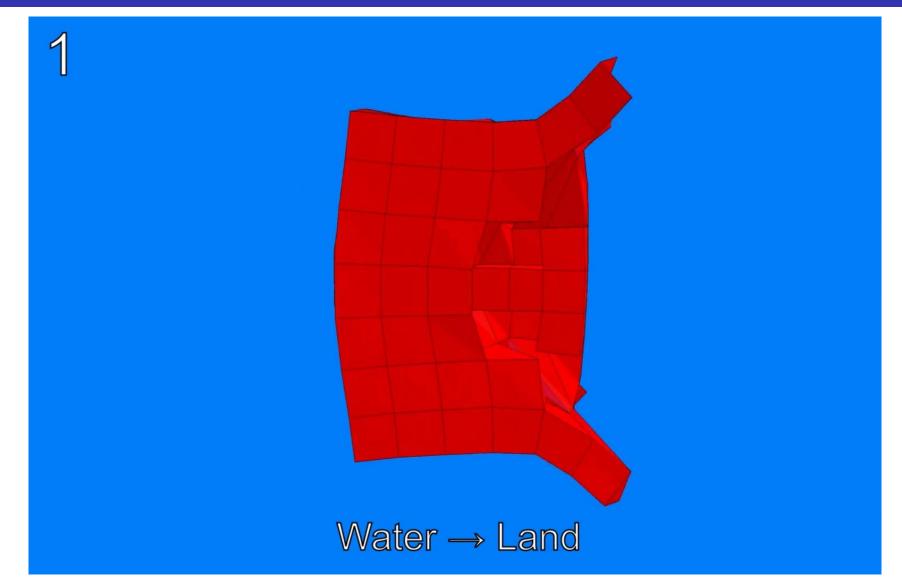


F. Corucci

Evolutionary Developmental Soft Robotics

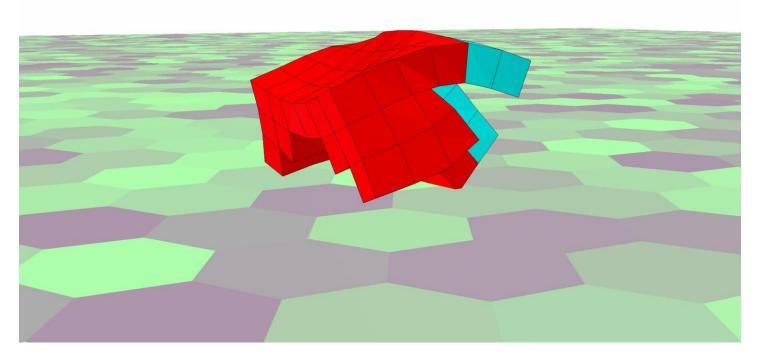
F. Corucci

Evolutionary Developmental Soft Robotics

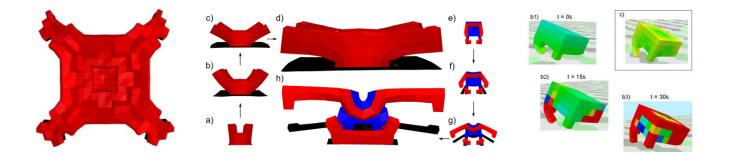

Various examples of spontaneous <u>exaptation</u> could be observed, e.g.:

Land \rightarrow Water

 Robots develop flapping appendages for swimming


Water \rightarrow Land

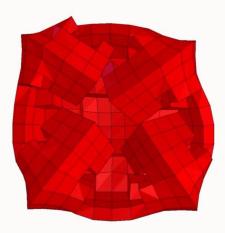
- Flapping appendages are shortened and become legs, arms
- <u>Corucci, F.</u>, Cheney, N., Giorgio-Serchi, F., Bongard, J., & Laschi, C. (2017). Evolving soft robots in aquatic and terrestrial environments: effects of material properties and environmental transitions (under review, arXiv preprint arXiv:1711.06605. ISO 690, 2017)
- <u>Corucci, F.</u>, Cheney, N., Lipson, H., Laschi, C., & Bongard, J. (2016). Evolving swimming soft-bodied creatures. In ALIFE XV, The Fifteenth International Conference on the Synthesis and Simulation of Living Systems, Late Breaking Proceedings (p. 6-7).


Corucci, F., Cheney, N., Giorgio-Serchi, F., Bongard, J., & Laschi, C. (2017). Evolving soft robots in aquatic and terrestrial environments: effects of material properties and environmental transitions (under review, arXiv preprint arXiv:1711.06605. ISO 690, 2017)

(Slow-motion)

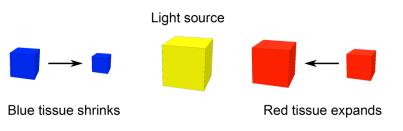
The <u>fastest terrestrial runner</u> was evolved in Water→Land experiments: it shows <u>traces of ancestral tentacles once used to swim</u>, now used to balance

STUDYING THE EVOLUTION OF DEVELOPMENT AND MORPHOLOGICAL COMPUTATION



Morphological development

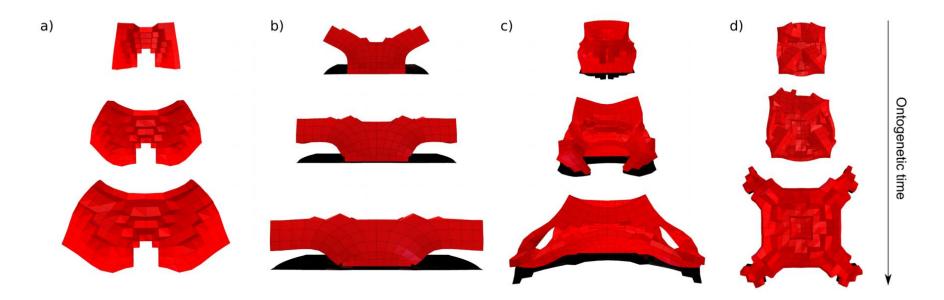
- Pervasive in Nature
- Soft robots have a <u>largely</u> <u>unexplored potential in this respect</u>
- → <u>Simulation studies can help</u> <u>understanding these new abilities</u>


Evolving morphological development in robots

Artificial Evolution of Growing Soft Creatures

Setup:

- <u>Phototropism</u>, growing towards light sources
- <u>Time-dependent</u> environment-<u>mediated development</u>: volumetric change in response to light (grow/shrink)



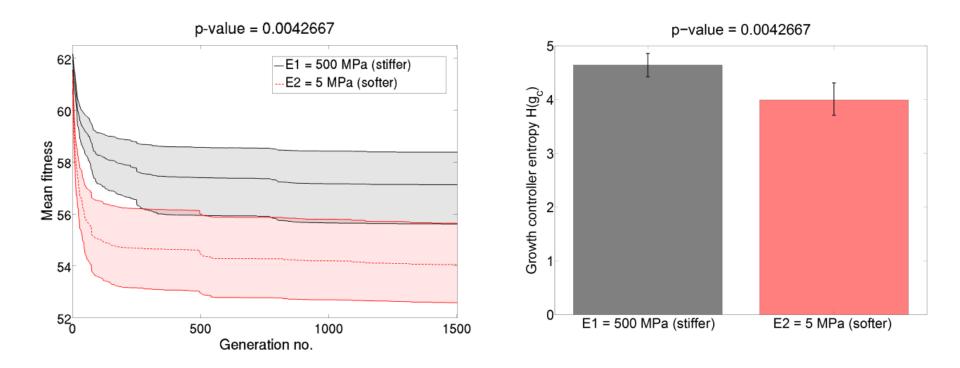
Evolution optimizes:

 Morphology and developmental parameters (grow/shrink, rate...)

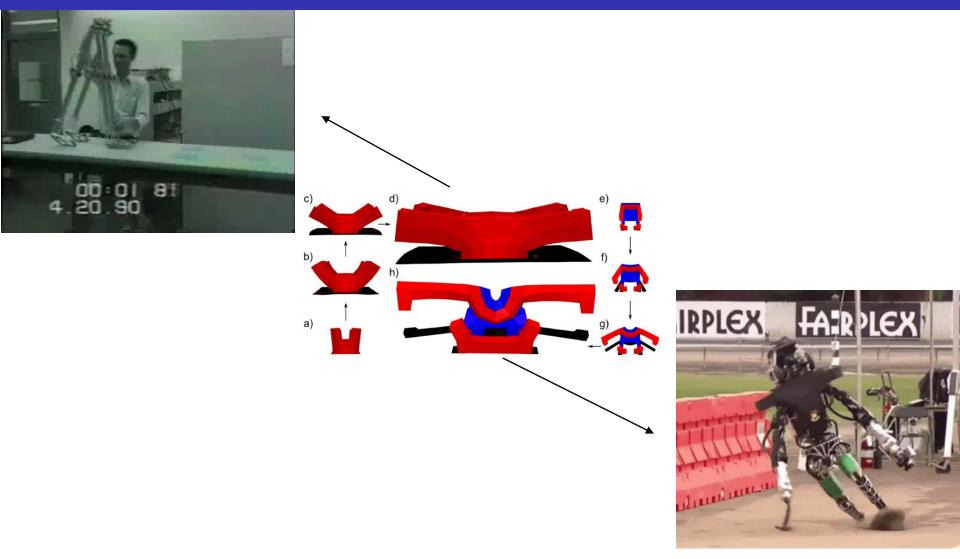
<u>Corucci, F.</u>, Cheney, N., Lipson, H., Laschi, C., & Bongard, J. (2016). Material properties affect evolution's ability to exploit morphological computation in growing soft-bodied creatures. In *ALIFE XV, The Fifteenth International Conference on the Synthesis and Simulation of Living Systems* (pp. 234-241).


Evolved growing soft robots

<u>Corucci, F.</u>, Cheney, N., Lipson, H., Laschi, C., & Bongard, J. (2016). Material properties affect evolution's ability to exploit morphological computation in growing soft-bodied creatures. In *ALIFE XV, The Fifteenth International Conference on the Synthesis and Simulation of Living Systems* (pp. 234-241).


Under which conditions does <u>morphological computation</u> evolve <u>in these growing soft-bodied creatures</u>?

Evolving morphological computation


Corucci, F., Cheney, N., Lipson, H., Laschi, C., & Bongard, J. (2016). Material properties affect evolution's ability to exploit morphological computation in growing soft-bodied creatures. In ALIFE XV, The Fifteenth International Conference on the Synthesis and Simulation of Living Systems (pp. 234-241).

Evolving morphological computation

- → In this task, softer robots perform better despite using simpler growth controllers
 → Morphological computation
- → When morphological computation cannot be evolved (stiff robots), evolution tries to automatically compensate for it by «complexifying» the control

Evolving morphological computation

Corucci, F., Cheney, N., Lipson, H., Laschi, C., & Bongard, J. (2016). Material properties affect evolution's ability to exploit morphological computation in growing soft-bodied creatures. In *ALIFE XV, The Fifteenth International Conference on the Synthesis and Simulation of Living Systems* (pp. 234-241).

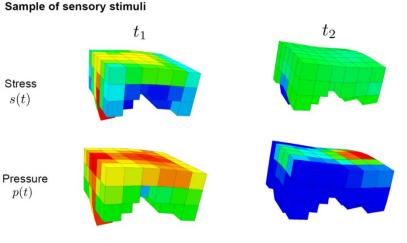
When, how, and in response to which stimuli should a soft-bodied creature adapt?

Can evolving morphological development result in increased adaptivity and robustness?

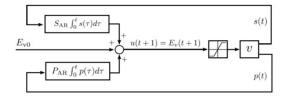
<u>Corucci, F.</u>, Cheney, N., Kriegman, S., Laschi, C., Bongard, J., (2017). Evolutionary developmental soft robotics as a framework to study intelligence and adaptive behavior in animals and plants, Frontiers in Robotics and AI

Evolving adaptation laws for soft robots

Task:


• Locomotion

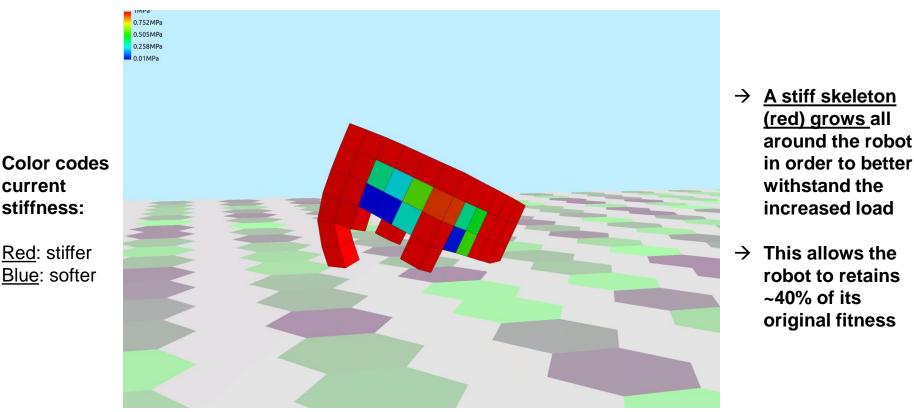
Artificial Evolution dictates:


- The initial stiffness of each voxel
- Whether a voxel should <u>soften or stiffen</u> in response to <u>mechanical stimulation</u>

→ <u>Biological inspiration</u>: Wolff's law of bones remodeling

 <u>The sensory stimuli driving the adaptive</u> <u>change</u> (internal stress/pressure)

Developmental control scheme



<u>Corucci, F.</u>, Cheney, N., Kriegman, S., Laschi, C., Bongard, J., (2017). Evolutionary developmental soft robotics as a framework to study intelligence and adaptive behavior in animals and plants, Frontiers in Robotics and Al

Evolving adaptation laws for soft robots

Best robot:

- Has evolved to stiffen in response to repeated mechanical stimulation (pressure is selected)
- Will now be exposed to a new environment (gravity x2) → Performances will drop, but...
 - \rightarrow Environmental change \rightarrow Different sensory stimulation \rightarrow Different adaptation

<u>Corucci, F.</u>, Cheney, N., Kriegman, S., Laschi, C., Bongard, J., (2017). Evolutionary developmental soft robotics as a framework to study intelligence and adaptive behavior in animals and plants, Frontiers in Robotics and AI

Evolving adaptation laws for soft robots

- → The evolved adaptive law appears to be general
- → Resulted in increased adaptivity and robustness

<u>Corucci, F.</u>, Cheney, N., Kriegman, S., Laschi, C., Bongard, J., (2017). Evolutionary developmental soft robotics as a framework to study intelligence and adaptive behavior in animals and plants, Frontiers in Robotics and Al

Artificial evolutionary and developmental approaches:

- Can <u>solve complex engineering problems</u>
- Can represent a <u>general and comprehensive framework</u> to automatically design adaptive robots for arbitrary tasks and environments
 - → With progresses in soft fabrication and 3D printing, a <u>fully automated</u> <u>design-fabrication-deployment</u> pipeline will soon become possible
- Can <u>inform soft robotics</u>, and <u>help unleashing its full potential</u>, especially in terms of <u>adaptivity</u>
- Can help understanding the conditions under which <u>adaptive and intelligent</u> <u>behavior</u> emerges in biological and artificial systems

- EVOLUTIONARY CREATIVITY: Artificial Evolution «thinks» outside the box, can suggest effective and counterintuitive solutions
- **EMBODIMENT**: Artificial Evolution can <u>systematically produce embodiment</u> and <u>morphological computation</u>
- **IMPORTANCE OF THE BODY:** <u>Material properties</u> dramatically affect the <u>emergence of different morphologies and behaviors</u>, as well as that of <u>morphological computation</u>
- EVO-DEVO: <u>Artificial Evolution</u> is able to discover general <u>adaptation laws</u> for soft robots that can result in increased <u>robustness</u> and <u>adaptivity</u>

References

- <u>F. Corucci</u>, N. Cheney, S. Kriegman, J. Bongard, C. Laschi, "*Evolutionary developmental soft robotics as a framework to study intelligence and adaptive behavior in animals and plants*", Frontiers in Robotics and AI
- <u>F. Corucci</u>, "Evolutionary Developmental Soft Robotics: towards adaptive and intelligent soft machines following nature's approach to design", In Soft Robotics: Trends, Applications and Challenges, Springer, 2017, 111-116
- •<u>F. Corucci</u>, N. Cheney, H. Lipson, C. Laschi, and J. Bongard, "*Material properties affect evolution's ability to exploit morphological computation in growing soft-bodied creatures*", In: Proceedings of ALIFE XV, The Fifteenth International Conference on the Synthesis and Simulation of Living Systems, 2016
- •S. Kriegman, N. Cheney, <u>F. Corucci</u>, J. Bongard, "A Minimal Developmental Model Can Increase Evolvability in Soft Robots", In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), 2017
- •<u>F. Corucci</u>, N. Cheney, F. Giorgio-Serchi, J. Bongard, C. Laschi, "*Evolving soft locomotion in aquatic and terrestrial environments: effects of material properties and environmental transitions*", (under review, arXiv preprint arXiv:1711.06605. ISO 690)
- <u>F. Corucci</u>, M. Calisti, H. Hauser, C. Laschi, "*Novelty-based evolutionary design of morphing underwater robots*", In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), 2015
- <u>F. Corucci</u>, M. Calisti, H. Hauser, C. Laschi, "*Evolutionary discovery of self-stabilized dynamic gaits for a soft underwater legged robot*", In: Proceedings of the 17th IEEE International Conference on Advanced Robotics (ICAR2015), 2015
- V. Cacucciolo*, <u>F. Corucci</u>*, M. Cianchetti, C. Laschi, "*Evolving optimal swimming in different fluids: a study inspired by batoid fishes*", In: Biomimetic and Biohybrid Systems Living Machines 2014, Springer Lectures Notes in Articial Intelligence, 2014 (* equal contribution)
- •F. Giorgio-Serchi, A. Arienti, <u>F. Corucci</u>, M. Giorelli, C. Laschi, "*Hybrid parameter identication of a multi-modal underwater soft robot*", Bioinspiration & Biomimetics 12.2 (2017): 025007.