### **DEVELOPMENTAL ROBOTICS**

Language, Trust and Theory of Mind

Angelo Cangelosi University of Manchester





The University of Manchester

# **Robots, Language & Cognition**

How can we **design robots** that are capable of using and **understanding language** to communicate with humans and other robots?

What can cognitive scientists **learn from robot experiments** on embodied language learning?







# **Talking to Robots**

 Computers and robots can be easily pre-programmed to memorise a dictionary, but cannot understand the language they use

















Example of self-referential, amodal network of word definitions in Webster's Dictionary (Roy 2005)  $\Rightarrow$  Chinese Room (Searle 1980)

### Chinese Room Thought Experiment (Searle 1980)



#### jolyon.co.uk

Searle, J.(1980), "Minds, Brains and Programs", Behavioral and Brain Sciences 3 (3): 417–457 Harnad, S (2005), "Searle's Chinese Room Argument", Encyclopedia of Philosophy, Macmillan

### **Chinese Room Experiment**

### WITH DAVID EAGLEMAN PBS WEDNESDAY OCTOBER 14 - NOVEMBER 18 10/9c

Series Director Series Editor Senior Producer JENNIFER BEAMISH

TOBY TRACKMAN JULIAN JONES

Executive Producers JUSTINE KERSHAW DAN OLIVER DAVID EAGLEMAN

Line Producer HELEN CONLAN **Director of Production SARAH SAPPER** 



#### © Blink Films

### **Chinese Room Experiment**





# **Angelo's Room Experiment**

**Question**: quanti anni havi la picciotta ?

### Dictionary

- *picciotta*: setti anni, picca pitittu, maciari hovu
- *za'nzina*: settanta anni, assai pitittu, manciari haddina

- haddina: dui anni, assai pitittu, maciari simenza
- anni: dui, setti, settanta
- *pitittu*: assai, picca
- *manciari*: hovu, haddina, simenza

### **Reply Rule Book**

- quanti anni havi la X ?
- quantu pitittu havi la X ?
- soccu voli manciari la X ?
- → la X havi A anni
- → la X havi B pitittu
  - la X voli manciari C

# **Angelo's Room Experiment - Grounding**

#### Dictionary

- *picciotta*: setti anni, picca pitittu, maciari hovu
- za nzina: settanta anni, assai pitittu, manciari haddina
- haddina: dui anni, assai pitittu, maciari simenza
- anni: dui, setti, settanta
- *pitittu*: assai, picca
- manciari: hovu, haddina, simenza





iotta

za'nzina



haddina



hovu



simenza



picca

assai



manciari

# Learning & Development

Robots can be easily **pre-programmed** to memorise a dictionary, **but** cannot fully understand the language they use

- ✓ Children are **slow**, but efficient at learning a language (vocabulary spurt) (Tomasello 2008)
- Children use their **body** for situated interaction (Smith & Samuelson 2010)
- ✓ The **brain** integrates language and sensorimotor knowledge (Pulvermueller 2003)
- ✓ Children develop Theory of Mind (ToM) for social interaction





**Cognitive Psychology** 

#### **DEVELOPMENTAL ROBOTICS**





2022



direct.mit.edu/books/oa-edited-volume/5331/Cognitive-Robotics

**MIT Press Direct** 

## **Embodied Language Learning**

# Developmental Psychology of Language Acquisition



# **Developmental <u>Robotics</u>** of Language Acquisition

- ERA architecture for cumulative learning
  - 5+ Experiments: first words, mutual exclusivity, U-learning,
  - Collaboration with BabyLabs: Smith (Indiana), Horst (Sussex), Floccia (Plymouth), Twomey (Manchester), Marchetti (Cattolica Milan)



# iCub's Modi Experiment



#### Morse et al. (2015) PLoS ONE



# iCub 'Modi' : Predictions



- 6 robot/baby Experiments
- Model prediction
  - Changes in posture (e.g. from sitting to standing) will remove task interference effect despite the target location remaining consistent.



### **Embodied Attention & Word Learning**

### Background

Yu & Smith (2012). Embodied attention and word learning by toddlers. Cognition



\* Linda B. Smith, Indiana University Bloomington: How Infants Break Into Language -- Keynote Address at the 2017 International Convention of Psychological Science, Vienna, Austria. (https://www.youtube.com/watch?v=NRtGKgm2Pz8)

### **Embodied Attention & Word Learning**

# Training

#### MANCHESTER 1824

The University of Manchester







#### Raggioli & Cangelosi (2022) ICDL

# **Open-Ended Cumulative Learning**



Morse & Cangelosi (2016) Cognitive Science

# Learning Abstract Words



# Learning Abstract Words



Finger counting





Abstract words: Use, Make

De la Cruz et al. (2014)

Rucinski et al. (2012)

Stramandinoli et al (2016)

# **Counting Gestures/Pointing**

- Skills development
  - Pointing (pretraining)
  - Recitation (pretraining)
  - Counting with/out pointing
  - Puppet pointing
  - Integrate all skills





Alibali & DiRusso & Pecyna et al.



Pecyna al. (2021)

### **Trust in Human-Robot Interaction**

# **Towards a Theory of Mind**

# Development of ToM (Theory of Mind)

• Wimmer & Perner (1983). "Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children's understanding of deception". *Cognition* 



#### Sally-Anne test

- Sally puts an object into a location x
- In her absence, Anne moves the object to location y.
- Ann returns
- Child asked where Anne believes the object is

#### **Results – deception detection**:

- None of the 3-4-years old children
- 86% of 6-9-years old children

# **Trust in Human-Robot Interaction**



Vinanzi, Cangelosi et al. (2018) Phil. Trans. Royal Society B

# **Intention Reading**

- Cognitive architecture for intention reading from action and social gaze
- Intention (Mind)-reading is the ability to understand a goal pursued by someone through the observation of physical clues (mostly postural and gaze)
- Key factor in human survival and basis for every other cognitive ability; Developed with experience (Woodward, 2009)



Which object is she going to grasp? (Ambrosini, 2015)

Vinanzi, Cangelosi & Goerick (2019, 2020, 2021)

# **Experimental Setup**





WALL

TOWER



CASTLE

STABLE

#### Vinanzi, Cangelosi & Goerick (2019, 2020, 2021)

# **Intention Reading**



The University of Manchester



# Mindreading for Robots

Predicting Intentions via Dynamical Clustering of Human Postures

S. Vinanzi, C. Goerick, A. Cangelosi

Vinanzi, Cangelosi & Goerick (2019, 2020, 2021)

# Take Home Message

- Developmental approaches
  - Interdisciplinary approach
  - Embodiment cues in development
  - Multiple developmental phenomena
  - Close match with empirical data
- Open challenges
  - Open-ended learning and larger lexicons
  - Explainable AI for Trustworthy Robots
  - Robot companion and personal robotics applications

