课

The ShanghAl Lectures

An experiment in global teaching

Fabio Bonsignorio The BioRobotics Institute, SSSA and Heron Robots

Today from the BioRobotics Institute, Pontedera (PI)

欢迎您参与 "来自上海的人工智能系列讲座"

Lecture 5

Evolution: Cognition from Scratch, Cognition from Interaction 24 November 2016 skype: PhD.Biorobotics

(only for lecture sites connected by streaming

The need for an embodied perspective

- "failures" of classical AI
- fundamental problems of classical approach
- Wolpert's quote: Why do plants not have a brain? (but check Barbara Mazzolai's lecture at the ShanghAl Lectures 2014)
- Interaction with environment: always mediated by body

"English Room" thought experiment

"this is Spanish for me" (in Austria to say a speech is impossible to understand) - (funny for me, for an Italian Spanish is quite easy :-))

Successes and failures of the classical approach

successes applications (e.g. Google) chess

manufacturing

("controlled"artificial worlds)

failures

foundations of behavior

natural forms of intelligence

interaction with real world

Industrial robots vs. natural systems

principles:

- low precision
- compliant
- reactive
- coping with uncertainty

humans

no direct transfer of methods

Complete agents

Properties of embodied agents

- subject to the laws of physics
- generation of sensory stimulation through interaction with real world
- affect environment through behavior
- complex dynamical systems
- perform morphological computation

Recognizing an object in a cluttered environment

(a)	

manipulation of environment can facilitate perception

Experiments: Giorgio Metta and Paul Fitzpatrick

Illustrations by Shun Iwasawa

Today's topics

- short recap
- characteristics of complete agents
- illustration of design principles
- parallel, loosely coupled processes: the "subsumption architecture"
- case studies: "Puppy", biped walking
- "cheap design" and redundancy

Parallel, loosely coupled processes

intelligent behavior:

- emergent from system-environment interaction
- based on large number of parallel, loosely coupled processes
- asynchronous
- coupled through agent's sensory-motor system and environment

Implications of embodiment

ctures 授 课

Implications of embodiment

How to quantify?

• Some hints in Lecture 7!

"The brain in the vat"

supply energy

flush away waste products

complicated: providing stimulation comparable to that normally provided to a brain by its environmentally situated body

"Brain-in-a-vat"

Alva Noë, "Out of our heads - why you are not your brain", New York, Hill and Wang, 2009

I'm walking outside in the sun!!

"Brain-in-a-vat"

Alva Noë, "Out of our heads - why you are not your brain", New York, Hill and Wang, 2009

- supply er
- flush awa

volunteer for short presentation of "Brain-in-a-vat" (1 December 2016)

complicated: providing stimulation comparable to that normally provided to a brain by its environmentally situated body

Artificial Neural Networks

many excellent books available

Time perspectives

20

Time perspectives in understanding and design

state-oriented **"hand design"** "here and now" perspective

learning and development initial conditions, learning and developmental processes "ontogenetic" perspective

"phylogenetic" perspective

evolutionary evolutionary Understanding: all three perspectives requires Design: level of designer commitments, relation to autonom

Rechenberg's "fuel pipe problem"

Rechenberg's "fuel pipe problem"

个

Evolutionary designs

evolutionary designs: (a) Rechenberg's "fuel pipe", (b) antenna for satellite

Evolutionary designs

evolutionary designs: (a) Rechenberg's "fuel pipe", (b) antenna for satellite

Artificial evolution

- John Holland
- Ingo Rechenberg
- John Koza

Artificial evolution

- John Holland: Genetic Algorithm, GA
- Ingo Rechenberg: Evolution Strategy, ES
- John Koza: Genetic Programming, GP

Cumulative selection

Richard Dawkins (author of "The selfis gene")

Watch out!!

the creationists !?!!!

Richard Dawkins: very outspoken against creationism

Biomorphs The power of esthetic

- encoding "creature" in genome (string of numbers):
- expression of "genes" (graphical appearance):

 selection of individuals for "reproduction" (based on "fitness" esthetic appeal) <u>http://suhep.phy.syr.edu/courses/mirror/biomorph/</u>

Biomorphs: by surrealist painter Desmond Morris

Andrew Murray

Silvano Levy

的计

ANALYTICAL CATALOGUE RAISONNÉ

exhibitions: 1948 - 2008 A Lost World

DESMOND MORRIS

50 YEARS OF SURREALISM

Mue + Kly

Silvano Levy

Michel Remy

DESMOND MORRIS

IRREALISM

Silvano Levy

SMOND

MORRIS

Biomorphs Encoding in genome

- "genes" 1-8: control of overall shape (direction, length of attachment)
- "gene" 9: depth of recursion
- "genes" 10-12: color
- "gene" 13: number of segmentations
- "gene" 14: size of separation of segments
- "gene" 15: shape for drawing (line, oval,

encoding	development	selection	reproduction
 binary 	 no development 	 "roulette wheel" 	 mutation
 many-character 	 (phenotype = genotype) development with and without 	 elitism 	 crossover
 real-valued 		 rank selection 	
		 tournament 	
	interaction with the	 truncation 	
	environment	 steady-state 	

The 海 hanghAl 智 Lectures

授课

33

Evolving a neural controller

授

Evolving a neural controller

What do we need to specify?

Encoding in genome

encoding	development	selection	reproduction
 binary 	 no development 	 "roulette wheel" 	 mutation
 many-character 	 (phenotype = genotype) development with and without 	 elitism 	 crossover
 real-valued 		 rank selection 	
		 tournament 	
	interaction with the	 truncation 	
	environment	 steady-state 	

The 海 hanghAl 智 Lectures

授课

38

Fitness function and suggestions? _> selection Chiba

encoding	development	selection	reproduction
 binary 	 no development 	 "roulette wheel" 	 mutation
 many-character 	(phenotype =	 elitism 	 crossover
 real-valued 	 genotype) development with and without 	 rank selection 	
		 tournament 	
	interaction with the	 truncation 	
	environment	 steady-state 	

39

-.3 -.03 -.37 .1 .37 .3

.17 .1 -.37 .03 .17 .17

Approaches to evolutionary robotics

evolve control

- given robot
 (neural network)
- embodied approach co-evolution of morphology and control

Evolving morphology and control: Karl Sims's

Video "Karl Sims's evolved creatures"

Parameterization of morphology

Parameterization of morphology

New version: Golem (Lipson and Pollack)

representation of morphology in genome

- robot: bars, actuators, neurons
- bars: length, diameter, stiffness, joint type
- actuators: type, range
- neurons: thresholds, synaptic strer

(recursive encoding)

New version: Golem (Lipson and Pollack)

representation of morphology in genome

- For the second s
- actuators: type, range
- neurons: thresholds, synaptic strer

(recursive encoding)

Genetic Regulatory Networks (GRNs): Bongard's "block

- development (morphogenesis) embedded into evolutionary process, based on GRNs
- testing of phenotypes in physically realistic simulation

Evolution of a "block pusher" ("Artificial Ontogeny")

Video "Evolution of block pushers"

Inchword methoc of locomotion

S: sensor , M: motor

Bongard's evolutionary scheme

reproduction: mutation and recombination

genotype: parameters of genetic regulatory network ontogenetic development: "transcription factors" phenotype selection: physically realistic

simulation

人上 The ShanghAl B Lectures 能授

Representation of "gene"

53

materials for self-study

Time scales tightly intertwined

54

授 课

Design principles for artificial evolution

Principle 1: Population

Principle 2: Cumulative selection and selforganization

Principle 3: Brain-body co-evolution

Principle 4: Scalable complexity

Principle 5: Evolution as a fluid process

Principle 6: Minimal designer bias

End of lecture 5

Thank you for your attention!

stay tuned for the guest lecture

Assignments for next week

- Next lecture on 1 December 2016: "Embodied Intelligence".
- Read chapters 8, 9 of "How the body
- Additional study materials (on web site)

End of lecture 5

Thank you for your attention!

stay tuned for lecture 6 "Morphological Computation, Self-Organization of Behaviors and Adaptive Morphologies"

STITUTO DI BIOROBOTICA

> cuola Superiore ant'Anna

Fabio Bonsignorio Prof,the BioRobotics Institute, SSSA CEO and Founder Heron Robots Santander - UC3M Chair of Excellence 2010

Lectures

Shang

能

Research interests

- embodied intelligence, cognition/AI and robotics
- experimental methods in Robotics and Al
- Advanced approaches to Industry 4.0
- synthetic modeling of life and cognition
- novel technologically enabled approaches to higher education and lifelong learning

The ShanghAl Lectures 2013-2016

Rolf Pfeifer

Institute for Academic Initiatives, Osaka University, Japan Dept. of Automation, Shanghai Jiao Tong University, China Prof Em., Former Director AI Lab, Univ. of Zurich

授课

- **Research interests**
- embodied intelligence
- bio-inspired robotics
- self-organization and emergence
- educational technologies

The ShanghAl Lectures

How the body shapes the way we think **MIT Press** 设计 Understanding Intelligence

