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Representations Matters
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Depth: Repeated Composition
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Historical Waves
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Historical Trends: Growing Datasets

Dataset see (mumbor cxamphs)

Figure 1.8



The MNIST Dataset
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Conpections per pouran
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Number of neurors (logarithmic scale)

Number of Neurons
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Numerical Computation for Deep Learning



Numerical concerns for implementations of deep
learning algorithms

Algorithms are often specified in terms of real numbers; real numbers cannot be implemented in
a finite computer

Does the algorithm still work when implemented with a finite number of bits?

Do small changes in the input to a function cause large changes to an output?

Rounding errors, noise, measurement errors can cause large changes

Iterative search for best input is difficult



Roadmap

Rounding error, underflow, overflow



Iterative Optimization

.  Curvature

- Constrained optimization
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Approximate Optimization
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We usually don’t even reach a local minimum
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Iterative Optimization

.  Gradient descent

- Constrained optimization



Critical Points
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Saddle Points

Figure 4.5

| (Gradient descent escapes,
Saddle points attract see Appendix C of “Qualitatively
Newton’s method Characterizing Neural Network

Optimization Problems”)



Curvature
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Neural net visualization

At end of learning:
- gradient is still large

- curvature is huge
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Iterative Optimization

.  Gradient descent

.  Curvature



Roadmap

- lterative Optimization



Numerical Precision: A deep learning super sKkill

Often deep learning algorithms “sort of work”

Loss goes down, accuracy gets within a few
percentage points of state-of-the-art

No “bugs” per se

Often deep learning algorithms “explode” (NaNs, large
values)

Culprit is often loss of humerical precision



Rounding and truncation errors

In a digital computer, we use float32 or
similar schemes to represent real numbers

A real number x is rounded to x + delta for
some small delta

Overflow: large x replaced by inf

Underflow: small x replaced by O



Bug hunting strategies

If you increase your learning rate and the loss geis
stuck, you are probably rounding your gradient to
zero somewhere: maybe computing cross-entropy
using probabilities instead of logits

For correctly implemented loss, too high of learning
rate should usually cause explosion



Machine Learning
Basics



Linear Regression
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Underfitting and Overfitting in Polynomial

Estimation
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Generalization and Capacity
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Training Set Size
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Weight Decay
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Bias and Variance
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Decision Trees
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Principal Components Analysis
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Curse of Dimensionality




Nearest Neighbor
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Manifold Learning
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Convolutional
Networks



Convolutional Networks

- Scale up neural networks to process very large images /
video sequences

- Sparse connections
- Parameter sharing

- Automatically generalize across spatial translations of
inputs

- Applicable to any input that is laid out on a grid (1-D, 2-D,
3-D, ...)



Key ldea

Replace matrix multiplication in neural nets
with convolution

Everything else stays the same
Maximum likelihood
Back-propagation

etc.



Matrix (Dot) Product

Cig =) AiBr;. (2.5)
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Edge Detection by Convolution
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Figure 9.6



Practical
Methodology



What drives success in ML?

Arcane knowledge . Knowing how

Mountains

of dozens of to apply 3-4
of data?

obscure algorithms? standard techniques?




Example: Street View Address Number
Transcription
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Neural net
Neural net

243 43 143
(Goodfellow et al, 2014)




Three Step Process

e Use needs to define metric-based goals
e Build an end-to-end system

e Data-driven refinement



ldentify Needs

e High accuracy or low accuracy?
e Surgery robot: high accuracy

e Celebrity look-a-like app: low accuracy



Choose Metrics

Accuracy? (% of examples correct)
Coverage? (% of examples processed)
Precision? (% of detections that are right)
Recall? (% of objects detected)

Amount of error? (For regression problems)



End-to-end System

e Get up and running ASAP
e Build the simplest viable system first
e What baseline to start with though?

e Copy state-of-the-art from related publication



Deep or Not?

e Lots of noise, little structure -> not deep
e Little noise, complex structure -> deep
e (Good shallow baseline:

e Use what you know

e Logistic regression, SVM, boosted tree are all
good



Choosing Architecture Family

e No structure -> fully connected
e Spatial structure -> convolutional

e Sequential structure -> recurrent



Test accuracy (%)
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High Test Error

e Add dataset augmentation
e Add dropout

e (Collect more data



Error (MSE)

Increasing Training Set Size
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Triiniog ervor

Tuning the Learning Rate
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Monte Carlo
Methods




Roadmap

Importance Sampling

Markov Chains



Randomized Algorithms

Las Vegas

Monte Carlo

Type of Answer

Exact

Random amount of
error

Runtime

Random (until answer
found)

Chosen by user (longer
runtime gives lesss
error)



Estimating sums / integrals with samples

.hzyumﬂ_&mm (17.1)

s_/puuumz_auun (172)

1 - TERE D ¢
8y = = z', (17.3)
8 ”ZMI | (17.3)



Justification

Unbiased:
The expected value for finite n is equal to the correct value

The value for any specific n samples will have random error, but the
errors for different sample sets cancel out

Low variance:
Variance is O(1/n)

For very large n, the error converges “almost surely” to 0



For more information...




Object
Categorization

Lecture slides adapted from "Object Categorization
an Overview and Two Models”
Fei Fei Li



Agenda

e Introduction to

“Object Categorization”
« “Bag of Words” models

 Part-based models




ob-ject < B Ngqn Key (3bjikt, -jekt)
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,. >4, thought, or action: an object of co\Y
The purposSy 4 of a specific action or effort: the objeciie—"%
Grammar. A
a. A noun, pronoun, 3d@oun phrase that receives or is affected by the &
sentence. |
b. A noun or substantivig@mverned by a preposition.
Philosophy. Something inté&@ible or perceptible by the mind.
Computer Science. A discrete item that can be selected and maneuvered, such as an onscreen
graphic. In object-oriented programming, objects include data and the procedures necessary to

operate on that data.




Plato said...

Ordinary objects are classified together if they
“participate’ in the same abstract Form, such as
the Form of a Human or the Form of Quartz.
Forms are proper subjects of philosophical
investigation, for they have the highest degree of
reality.

Ordinary objects, such as humans, trees, and
stones, have a lower degree of reality than the
Forms.

Fictions, shadows, and the like have a still lower
degree of reality than ordinary objects and so are
not proper subjects of philosophical enquiry.
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a lamp?

Detection: are there people?



mountain







Challenges 2: illumination







Challenges 4: scale




Challenges 5: deformation







Challenges 7: intra-class variation
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Three main issues
Representation
How to represent an object category

Learning
How to form the classifier, given training data

Recognition
How the classifier is to be used on novel data



“Bag-of-words” models




Bag of

Object




A clarification: definition of “BoW”
* |Looser definition

— Independent features
YL oy
e ={\




A clarification: definition of “BoW”

« Stricter definition
— Independent features
— histogram representation
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Hints that DL ... MUST WORK

5.LG] 13 May 2019

Towards a regularity theory for ReLLU networks —
chain rule and global error estimates

Julius Berner*, Dennis Elbriichter*, Philipp Grohsf, Arnulf Jentzen®
*Faculty of Mathematics, University of Vienna
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
iFaculty of Mathematics and Research Platform DataScience @ UniVienna, University of Vienna
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
§éDtspartmem of Mathematics, ETH Ziirich
Rimistrasse 101, 8092 Ziirich, Switzerland

Abstract—Although for neural networks with locally Lipschitz
continuous activation functions the classical derivative exists
almost everywhere, the standard chain rule is in general not
applicable. We will consider a way of introducing a derivative for
neural networks that admits a chain rule, which is both rigorous
and easy to work with. In addition we will present a method of
converting approximation results on bounded domains to global
(pointwise) estimates. This can be used to extend known neural
network approximation theory to include the study of regularity
properties. Of particular interest is the application to neural
networks with ReLLU activation function, where it contributes to
the understanding of the success of deep learning methods for
high-dimensional partial differential equations.

a way that admits a chain rule which is both rigorous as
well as easy to work with. Chain rules for functions which
are not everywhere differentiable have been considered in a
more general setting in e.g. [16]]. [17]. We employ the specific
structure of neural networks to get stronger results using
simpler arguments. In particular it allows for a stability result,
i.e. LemmallIL.3] the application of which will be discussed in
Section V. We would also like to mention a very recent work
[18] about approximation in Sobolev norms, where they deal
with the issue by using a general bound for the Sobolev norm
of the composition of functions from the Sobolev space W12,
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