Lecture 2. Embodiment: Concept and Models

Fabio Bonsignorio

The BioRobotics Institute, SSSA, Pisa, Italy and Heron Robots

Intelligence:

Hard to agree on definitions, arguments

- necessary and sufficient conditions?
- are robots, ants, humans intelligent?
 more productive question:
 - "Given a behavior of interest, how to implement it?"

Successes and failures of the classical approach

successes applications (e.g. Google) chess

manufacturing

("controlled" artificial worlds)

failures

foundations of behavior

natural forms of intelligence

interaction with real world

The "symbol grounding" problem

real world: doesn't come with labels ...

How to put the labels?? Gary Larson

Two views of intelligence

classical: cognition as computation

embodiment: cognition emergent from sensorymotor and interaction processes

The need for an embodied perspective

- "failures" of classical Al
- fundamental problems of classical approach
- Wolpert's quote: Why do plants not ...? (but...check...Barbara Mazzolai's lecture...)
- Interaction with environment: always mediated by body

"Frame-of-reference" Simon's ant on the beach

simple behavioral rules

•

complexity in interaction,
 not — necessarily — in brain

thought experiment: increase body by factor of 1000

Industrial robots vs. natural systems

robots

principles:

- low precision
- compliant
- reactive
- coping with uncertainty

humans

no direct transfer of methods

Communication through interaction with

- exploitation of interaction with environment

angle sensors in joints

"parallel, loosely coupled processes"

Emergence of behavior: the quadruped "Puppy"

- simple control (oscillations of "hip" joints)
- spring-like material properties ("under-actuated" system)
- self-stabilization, no sensors
- "outsourcing" of functionality

morphological computation

Implications of embodiment

"Puppy", But Also Cru

Pfeifer et al., Science, 16 Nov. 2007

Implications of embodiment

12

授