Neuromorphic Computing: Embodiment of Cognitive Neuronal Dynamics

Yulia Sandamirskaya

Institute of Neuroinformatics University of Zurich and ETH Zurich

What is "Cognition"?

Cognitivity of behavior:

- ➡ Decisions
 - defined by the sensed state
 - stimulus response
 - ➡ Memory
 - decoupling from the sensory flow
 - Working memory
 - Moment-to-moment memory
 - Long-term memory
 - habits episodes semar
 - skills contingencies relations
 - controllers

A story of the sugar-searching bacteria

Motility typical of flagellated rod-shaped bacteria

- semantics / language

Marc Bickhard "Interactivism"

Cognitive "computing"

- biological neural systems evolved to produce behavior
- amazing perception, adaptivity, control, learning capabilities
- efficient, robust, and powerful with "noisy" biological elements

Neuronal mechanisms: Braitenberg Vehicle

Mathematical formalisation: attractor dynamics

- "behavioral variable"
 - describes the behavior
- its rate of change:

$$\tau \dot{\phi}(t) = -\phi(t) + A(t)$$

- determines its dynamics
- overt behavior corresponds to attractors
 - stability

Multiple targets

- represent "utility" of options
- stabilise decisions

$$\dot{\phi}(t) \rightarrow \dot{u}(\phi, t)$$

"activation" and its dynamics

Neuronal correlate of behavior: population activity

➡"Dynamic neural field" model

$$\tau \dot{u}(x,t) = -u(x,t) + h + \int f(u(x',t))\omega(x-x')dx' + I(x,t)$$

Amari, S. Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 1977, 27, 77-87

Wilson, H. R. & Cowan, J. D. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, **1973**, 13, 55-80

Gerstner, Grossberg, Ermentrout, Coombes, Schöner&Spencer, Erlhagen...

Neural dynamics

Dynamic Neural Field, WTA, bump-attractor networks

$$\tau \dot{u}(x,t) = -u(x,t) + h + \int f(u(x',t))\omega(x-x')dx' + I(x,t)$$

"Cognitive" properties of Neural Fields

- "Detection" and "forgetting" instabilities
 - continuous time \longrightarrow discrete "events"
- Localised "bumps"
- "Selection" instability
 - stabilisation of selection decisions
- Sustained activation
 - modelling working memory

A problem with attractors

- not the ability to move
- movement corresponds to an attractor

Representing sequences of attractors

Sandamirskaya, Y. & Schöner, G. An Embodied Account of Serial Order: How Instabilities Drive Sequence Generation. Neural Networks, **2010**, 23, 1164-1179

Embodied DNF architectures

Action selection

Planning & acting

Learning to look

Sequence learning

Haptic learning

45

Histogram

Rotation Steps

31

360

13 180

Uncorrected MT

Rotation Steps

Corrected MT

Sandamirskaya, 2010-2015

"Implementation issue"

- analogue values
- parallel processing
- memory and computation interlinked
- digital representations
- sequential processing
- separate memory unit

Neuromorphic Hardware

Brain-inspired computing or sensing devices that emulate activity of biological neurons and synapses

"BrainDrop" (Stanford)

BrainScaleS (Heidelberg)

"TrueNorth" (IBM)

Digital

Analog

NEUROTECH

NEUROMORPHIC COMPUTING TECHNOLOGY LEADING TO AI REVOLUTION

Create and promote neuromorphic community in Europe: www.neurotechai.eu

Neuromorphic Hardware

VLSI device (ROLLS, CXQUAD)

population dynamics

Reconfigurable OnLine Learning Spiking (ROLLS)

- analog circuits for neurons and synapses
- digital communication of spikes

"programming" = wiring-up and setting parameters

Qiao et al, 2015

A Dynamic Neural Field on a neuromorphic chip

Indiveri et al, 2009

20

40

Sequence learning "program"

Kreiser, R.; Aathmani, D.; Qiao, N.; Indiveri, G. & Sandamirskaya, Y. Organising Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields. Frontiers in Neuromorphic Engineering, **2018**

Embodied experiment

Kreiser, R.; Aathmani, D.; Qiao, N.; Indiveri, G. & Sandamirskaya, Y. Organising Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields. Frontiers in Neuromorphic Engineering, **2018**

Navigation: Head-direction network

Kreiser, R.; Cartiglia, M. & Sandamirskaya, Y. A Neuromorphic approach to path integration: a head direction spiking neural network with visually-driven reset. IEEE Symposium for Circuits and Systems, ISCAS, **2018**

Navigation: Head-direction network

"Proprioception" only

Correction using vision

Map formation on the ROLLS chip

Map formation: Path integration in 2D

Kreiser, R.; Pienroj, P.; Renner, A. & Sandamirskaya, Y. Pose Estimation and Map Formation with Spiking Neural Networks: towards Neuromorphic SLAM. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, **2018**

Neuromorphic SLAM

Position representation

Reference frames transformation on chip

View-based target representation:

target in view

target lost from view

Allocentric target representation:

Neural ref. frame transformation:

Blum, H.; Dietmüller, A.; Milde, M.; Conradt, J.; Indiveri, G. & Sandamirskaya, Y. A neuromorphic controller for a robotic vehicle equipped with a dynamic vision sensor. Robotics: Science and Systems (RSS), **2017**

Motor control, learning

- PI-controller with spiking silicon neurons
- On-chip learning of feedforward control
- Easy to integrate with other SNN models

Glatz, S.; Kreiser, R.; Martel, J. N. P.; Qiao, N. & Sandamirskaya, Y. Adaptive motor control and learning in a spiking neural network, fully realised on a mixed-signal analog/digital neuromorphic processor. ICRA, arxiv, **2019**

Motor control: results

Time. ms

Learning the inverse mapping

Glatz, S.; Kreiser, R.; Martel, J. N. P.; Qiao, N. & Sandamirskaya, Y. Adaptive motor control and learning in a spiking neural network, fully realised on a mixed-signal analog/digital neuromorphic processor. ICRA, arxiv, **2019**

Why are these architectures fundamental?

- **Braintenberg vehicle, sequences**
 - attractors in a sensory-motor loop

Milde et al 2017a,b; Kreiser et al 2018

Reference frame transformations

- key for linking modalities

Blum et al 2017

- Simultaneous localisation and mapping: path integration, learning a map
 - state estimation, building representations
- Adaptive motor control
 - key element for adaptive behavior

Glatz et al, arxiv, 2018

Position synap

Directiona

- embodied cognitive computing requires:
 - decision making
 - memory
- these can be realised in neuronal dynamics (i.e. networks with recurrence)
- neural-dynamic architectures can be realised with spiking and continuous dynamics
- and can be interfaced to sensors and motors
- ➡ to create embodied neuromorphic cognitive systems

Funding

- Marie Curie IF
- FET PROACT

PhD Students

Julien Martel Alpha Renner* Raphaela Kreiser* **Claudius Strub*** Moritz Milder

Dora Sumislawska

Ambizione

MSc, BSc theses

Gwendolyn English

Eloy Barrero

Llewyn Salt

Mathis Richter

Tobias Storck

Christian Bell

Jianlin I u

Kay Müller

Valery Metry

Alpha Renner

David Niederberger

Raphaela Kreiser

Ammar Bitar

Jonathan Müller

Sebastian Glatz

Claudia Rudolph

FNSNF

- Project coordination
- Forschungskredit

Universität

Zürich^{⊍z}^H

GRC Grant

Semester theses

Alexander Dietmüller Héctor Vazquez Sebastian Glatz Mario Blatter Herman Blum Frédéric Debraine Matteo Cartiglia Lukas Blässig Lin Jin Lennard de Graf **David Niederberger Michel Frising** Nicolas Känzig Zahra Farsijani Panin Pienroj Michael Purcell Paul Joseph Viviane Yang Nuria Armengol Davide Plozza Jozef Bucko Damiano Steger **Balduim Dettling**

<u>Collaborators</u>

Gregor Schöner Giacomo Indiveri Florentin Wörgötter J.-C. Quinton John Spencer Piotr Dudek Fatih Yanik Jörg Conradt **Christian Faubel** Tobi Delbruck John Lipinski **Richard Hahnloser** Matt Luciw Jürgen Schmidhuber Helge Ritter Hajar Azgari Abhishek Banerjee

ZNZZentrum für Neurowissenschaften Zürich

• Junior Group fellowship

Thank you!