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Cognitivity of behavior:

What is “Cognition”?
A story of the  

sugar-searching bacteria
➡ Decisions

-  defined by the sensed state
-  stimulus - response 

➡ Memory

• Long-term memory

-  decoupling from the sensory flow
• Working memory

-Moment-to-moment memory 

-  habits
-  skills
-  controllers

-  semantics / language 
-  relations 

-  episodes
-  contingencies 

Marc Bickhard “Interactivism”



Cognitive “computing”

•  amazing perception, adaptivity, control, learning capabilities 
• efficient, robust, and powerful with “noisy” biological elements

• biological neural systems evolved to produce behavior



Neuronal mechanisms: Braitenberg Vehicle

sensory system

motor system

nervous system
body

2 Dynamic  Thinking

into an activation value using a particular type of 
neural coding called “rate coding.” The idea is that 
there is a one-to-one mapping from the physical 
intensity value in the world to the activation value in 
the nervous system, that is, to the firing rate induced 
by stimulation of the sensory cell. Similarly, motor 
systems can be characterized using a rate code pic-
ture where the activation value in the nervous sys-
tem is mapped to the force generated by a motor.

Critically, Braitenberg took his metaphor one 
step farther by situating the vehicle in a structured 
environment. Figure I.2 shows one of his vehicles 
situated in an environment that has a stimulus off 
to the left such that stimulation hits the two sensors 

differentially. In particular, the left sensor receives 
a higher intensity than the right sensor. If we 
assume that this critter is wired up such that strong 
stimulus intensity leads to low activation levels, this 
situation will generate an orienting behavior, what 
biologists have called “taxis”—the critter will turn 
toward the input. Why does this happen? In this 
vehicle, the nervous system is organized ipsilater-
ally, so the right motor receives input from acti-
vation associated with the right sensor. Because 
strong stimulation leads to a lower firing rate, the 
left motor will receive less activation than the right 
motor. Consequently, the left motor will turn more 
slowly than the right motor and the vehicle will 
turn toward the source. As it approaches the source, 
the intensities get stronger and the firing rates drop 
perhaps to zero—the critter approaches the stimu-
lus and stops.

The lesson from this narrative is that mean-
ingful behavior is not generated solely from a 
feed-forward view of the nervous system; rather, 
meaningful behavior emerges when an organism 
is situated in an appropriately structured envi-
ronment. All four components of the vehicle are 
important. Indeed, we should really think of the 
structured environment as the fifth component of 
the vehicle—without it, no meaningful behavior 
will arise, as James J Gibson has forcefully argued.

When we put all five components together, 
the resultant “vehicle–environment system” forms 
something called a dynamical system. To see this, 
the graph on the top of Figure I.3 collapses the sen-
sor and motor characteristics down into one direct 
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FIGURE I.1: A Braitenberg vehicle consists of sensory systems, motor systems, a nervous system, and a body. The 
sensory characteristic shown at the top right describes the activation output by the sensor system as a function of  
the physical intensity to which the sensor is sensitive. The motor characteristic shown at the bottom right describes the 
movement generated by the motor system as a function of the activation received as input.
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FIGURE I.2: The taxis vehicle of Braitenberg in an envi-
ronment with a single source of intensity. The sensor 
characteristic is a monotonic negative function, the motor 
characteristic a monotonic positive function. This leads 
to taxis behavior in which the vehicle turns toward the 
source (curved arrow).
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Different behaviours:



98 Foundations  of Dynamic  Field Theory

Note how this derivation makes use of five 
ingredients: (1) a model of the environment (top); 
(2) a sensor model (through the sensor character-
istic of Figure 4.1); (3) a motor model (through the 
motor characteristic of Figure 4.1); (4) a model of 
the body (linking the turning rate of the vehicle to 
the difference in turning rate of the wheels); and 
(5)  a model of the nervous system (that enabled 
concatenating sensor and motor characteristics). 
What we obtain from this derivation is a dynami-
cal system model of the behavior of the taxis vehicle 
in closed loop: The turning rate of the vehicle is 
nothing other than the derivative in time, !φ, of the 
heading direction, ϕ! Thus, we formally have the 
functional dependence

 !φ φ= ( )f  (4.1)

where f is the function depicted in the bottom panel 
of Figure 4.2. That is a differential equation that 
mathematically defines a dynamical system. We 
call this the behavioral dynamics of the taxis vehicle.

Figure 4.3 highlights that behavior emerges 
from this behavioral dynamics through an attractor 
state, a stable fixed point of the behavioral variable. 
In the figure, the vehicle is oriented to the right 
of the source. The behavioral dynamics is thus 
sampled at a heading direction to the right of the 
zero-crossing, generating a negative turning rate of 
the vehicle. The vehicle will thus reduce its head-
ing direction, turning to the left, until the turning 
rate becomes zero exactly when the vehicle is ori-
ented toward the source. Analogously, starting out 
at a heading direction to the left of the source will 
lead to positive rates of change, increasing heading 
direction by turning right, again toward the source. 
As we saw in Chapter 1 for the dynamics of neural 
activation, a zero-crossing of the dynamics with a 
negative slope is an attractor, a stable fixed point, 
now of the behavioral dynamics. That attractor 
generates the taxis behavior, the behavior of orient-
ing to the source of intensity.

The attractor dynamics thus determines the 
orientation behavior of the taxis vehicle. This 
dynamics does not really depend on how the head-
ing direction is measured or calibrated. Contrast, 
for instance, a calibration in which heading direc-
tion is measured relative to the magnetic north 
with a calibration in which heading direction is 
measured relative to the magnetic south. The two 
cases merely differ in how the labels read along the 
horizontal axis of the dynamics in Figure 4.3. The 
rate of change is determined by how the vehicle 

is oriented relative to the source, and that relative 
orientation does not depend on the absolute values 
of heading direction. Moreover, what determines 
the movement of the vehicle is the rate of change of 
its heading direction, which is enacted by sending 
different commands to the two wheels (based on a 
simple computation that takes into account the size 
of the wheels and how far apart they are mounted 
on the vehicle). The rate of change of heading direc-
tion is independent of the reference frame used for 
heading direction itself. In a sense, the behavioral 
variable is, therefore, a somewhat abstract concept; 
it abstracts away from the detailed mechanisms of 
the sensory and effector systems. The behavioral 
dynamics provides, however, a process account for 
movement generation, because it enables generat-
ing the modeled behavior using generic sensor or 
motor models.

In this derivation of the behavioral dynamics 
from the architecture of the taxis vehicle, we did 

Heading
direction

Turning rate
of vehicle

Attractor

FIGURE  4.3: The dynamics of heading direction has 
a fixed point at the zero-crossing of the rate of change. 
When the vehicle’s heading corresponds to the fixed point, 
the rotation rate is zero, so the vehicle remains oriented in 
that direction. When the vehicle is headed to the right of 
the fixed point as illustrated at the bottom, the negative 
turning rate drives the vehicle’s heading direction toward 
the fixed point, as indicated by the red arrow pointing to 
the left. Similarly, if the vehicle were headed to the left of 
the fixed point, the positive turning rate would drive the 
vehicle’s heading direction toward the fixed point, as illus-
trated by the red arrow pointing to the right. The conver-
gence to the fixed point from neighboring states implies 
that the fixed point is asymptotically stable, a fixed point 
attractor (marked by a red circle).
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Mathematical formalisation: attractor dynamics

•“behavioral variable”
-  describes the behavior

• its rate of change:

• overt behavior corresponds to 
attractors

-  stability

⌧ �̇(t) = ��(t) +A(t)

-  determines its dynamics



4 Dynamic  Thinking

Chapter 1 begins building this dynamical sys-
tems view with an overview of neural dynamics. 
We will see that to describe real nervous systems, 
we must move beyond the simple feed-forward pic-
ture captured by Braitenberg’s vehicle. Instead, we 
will use closed loops that take place entirely within 
the nervous system to create internal attractor 
states—neural patterns that make decisions, select 
one input over another, and keep those decisions 
active even when the input is removed (see right 
side of Figure I.4).

In Chapter 2, we ask how such neural activation 
variables come about. The Braitenberg picture sug-
gests that “neurons” must be intricately connected 
to the sensory surface and the motor surface. In 
simple vehicles, those surfaces are sampled by a 
small number of sensor or motor cells, but in real 
organisms, the sampling is so dense that we can 
describe these “surfaces” in terms of continuous 
spaces that are continuously coupled to the nervous 
system. Dynamic fields are the result—dynamical 

systems that ref lect distributions of activation 
over appropriate feature spaces, including physi-
cal space. This enables the nervous system to know 
where a stimulus is located in space and to identify 
its particular features (e.g., color, shape, and so on).

In Chapter 3, we review the neural foundations 
of dynamic fields. We show that populations of neu-
rons in cortex and many subcortical functions can 
be thought of using the concept of neural activation 
fields. In fact, it will turn out that real neurons in 
the brain operate as if they are smeared out over 
activation fields.

Finally, in Chapter 4, we come back to behav-
ioral dynamics. We show how behavioral and neu-
ral dynamics can be combined within dynamic field 
theory, linking perception, action, and cognition. 
We demonstrate how this link enables embodied 
cognition by implementing a behavioral and neural 
dynamics on a robotic vehicle that orients toward 
targets, which it detects, selects, and keeps in work-
ing memory.

Turning rate of vehicle

Heading
direction

Activation field

Heading
direction

FIGURE I.4: Left: With two sources of intensity in the environment, the dynamical system from which orientation 
behavioral emerges has two attractors (two zero-crossings toward which heading direction converges as indicated by 
the arrows). The vehicle selects one of the two sources depending on its initial heading. Right: Nervous systems with 
internal loops have neural dynamics in which activation evolves toward neural attractors. The activation field shown 
on top is in a neural attractor in which a peak of activation is positioned over the heading direction of one source, while 
input from the other source is suppressed. The first three chapters of the book provide the concepts to understand this 
form of internal neural processing.
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�̇(t) ! u̇(�, t)

“activation” and its dynamics

Neural dynamics

Multiple targets

• represent “utility” of options

• stabilise decisions



Neuronal correlate of behavior: population activity

➡“Dynamic neural field” model

Amari, S. Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 
1977, 27, 77-87

Wilson, H. R. & Cowan, J. D. A mathematical theory of the functional dynamics of cortical and thalamic 
nervous tissue. Kybernetik, 1973, 13, 55-80

Gerstner, Grossberg, Ermentrout, Coombes, Schöner&Spencer, Erlhagen…

“Reaching” task
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Neural dynamics
Dynamic Neural Field, WTA, bump-attractor networks



“Cognitive” properties of Neural Fields

• “Detection” and “forgetting” instabilities 
-  continuous time         discrete  “events” 

• Localised “bumps” 
-  continuous space        discrete “categories”   

• “Selection” instability 
-  stabilisation of selection decisions 

• Sustained activation  
-  modelling working memory 

➡ DNF “Architectures”



A problem with attractors

Perceptual and 
motor planning 

DNFs
Robotic 
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and Motors
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➡  not the ability to move 
➡ movement corresponds to an attractor



CoS field (E)

Action field (D)
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Sandamirskaya, Y. & Schöner, G. An Embodied Account of Serial Order: How Instabilities Drive Sequence Generation. 
Neural Networks, 2010, 23, 1164-1179 

Representing sequences of attractors 



Embodied DNF architectures

Haptic learning

Motivation The Problem The Solution: Rotation The Solution: Translation Conclusion

The Framework

Claudius Strub (INI) Tactile Exploration of Object Shape
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Sequence learning

Learning to lookAction selection

Planning & acting
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“Implementation issue”Neural dynamics
with appropriate time constants

Paradigm shift

Radically different from von Neumann
architectures.

Parallel elements with memory and
computation co-localized.

No virtual time (time represents itself).

Input/data driven computation.

Slow silicon
Inherently synchronized with the real-world “natural” events.

To process “natural” sensory signals efficiently (low bandwidth/power).

Low latency =) real-time interaction with the environment.

Giacomo Indiveri Neuromorphic processors 4 / 13

“Von Neumann” computerNeuronal dynamics

⌧ u̇(x, t) = �u(x, t) + h+

Z
f
�
u(x0, t)

�
!(x� x0)dx0 + I(x, t)

• digital representations 
• sequential processing 
• separate memory unit

Match

• analogue values 
• parallel processing 
• memory and computation interlinked



➡ Brain-inspired computing or sensing devices that emulate 
activity of biological neurons and synapses 

Neuromorphic Hardware

Create and promote neuromorphic 
community in Europe: www.neurotechai.eu

“BrainDrop” (Stanford) DYNAP (Zurich) BrainScaleS (Heidelberg)

“TrueNorth” (IBM) Loihi (Intel) SpiNNaker (Manchester)

Analog

Digital



neuron circuit of a neuron

Ning et al. A Learning Neuromorphic Processor
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Figure 3: Silicon neuron schematics. The NMDA block implements a voltage gating mechanism; the
LEAK block models the neuron’s leak conductance; the spike-frequency adaptation block AHP models
the after-hyper-polarizing current effect; the positive-feedback block N+ models the effect of the Sodium
activation and inactivation channels; reset block K+ models the Potassium conductance functionality.

2.2 THE NEUROMORPHIC PROCESSOR BUILDING BLOCKS

Here we present the main building blocks used in the ROLLS neuromorphic processor chip, describing
the circuit schematics and explaining their behavior.

2.2.1 The silicon neuron block The neuron circuit integrated in this chip is derived from the adaptive
exponential I&F circuit proposed in (Indiveri et al., 2011), which can exhibit a wide range of neural
behaviors, such as spike-frequency adaptation properties, refractory period mechanism and adjustable
spiking threshold mechanism. The circuit schematic is shown in Fig. 3. It comprises an NMDA block
(MN1,N2), which implements the NMDA voltage gating function, a LEAK DPI circuit (ML1−L7) which
models the neuron’s leak conductance, an AHP DPI circuit (MA1−A7) in negative feedback mode, which
implements a spike-frequency adaptation behavior, an Na+ positive feedback block (MNa1−Na5) which
models the effect of Sodium activation and inactivation channels for producing the spike, and a K+ block
(MK1−K7) which models the effect of the Potassium conductance, resetting the neuron and implementing
a refractory period mechanism. The negative feedback mechanism of the AHP block, and the tunable reset
potential of the K+ block introduce two extra variables in the dynamic equation of the neuron that can
endow it with a wide variety of dynamical behaviors (Izhikevich, 2003). As the neuron circuit equations
are essentially the same of the adaptive I&F neuron model, we refer to the work of Brette and Gerstner
(2005) for an extensive analysis of the repertoire of behaviors that this neuron model can reproduce, in
comparison to, e.g., the Izhikevich neuron model.

All voltage bias variables in Fig. 3 ending with an exclamation mark represent global tunable parameters
which can be precisely set by the on chip Bias Generator (BG). There are a total of 13 tunable parameters,
which provides the user with high flexibility for configuring all neurons to produce different sets of
behaviors. In addition, by setting the bits of the relative latches in each neuron, it is possible to configure
two different leak time constants ( if tau1! / if tau2!) and refractory period settings ( if rfr1! / if rfr2!) per
neuron. This gives the user the opportunity to model up to four different populations of neurons within
the same chip that have different leak conductances and/or refractory periods.

Frontiers in Neuroscience 7

population dynamics VLSI device (ROLLS, CXQUAD)

Neuromorphic Hardware



Reconfigurable OnLine Learning Spiking (ROLLS)

Qiao et al, 2015
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• analog circuits for neurons and synapses
• digital communication of spikes 

➡“programming” = wiring-up and setting parameters



A Dynamic Neural Field on a neuromorphic chip

Indiveri et al, 2009

Both De Young et al. and Hylander et al. presented very

simple examples of WTA networks, and showed the ability
of their VLSI networks to select one winner, but not to

perform soft WTA computation. Thanks to the progress of

VLSI technology, more recent implementation of spiking
VLSI WTA networks integrate many more neurons on a

single chip, and implement more elaborate soft WTA

models: in 2001, Indiveri et al. [40] presented a spiking
network consisting of 32 excitatory neurons and one global

inhibitory neuron. The authors characterized the behavior
of the network using the mean rate representation and

Poisson distributed input spike trains. They showed the

network could exhibit soft WTA behaviors modulated by
the strength of lateral excitation and investigated the net-

work’s ability to produce correlated firing, combined with

the WTA function. In 2004, several additional VLSI
implementations of WTA networks were presented: Oster

and Liu [51] presented a 64 neurons network that used all-

to-all inhibition to implement a hard WTA behavior;
Abrahamsen et al. [2] presented a time domain WTA

network that used self-resetting I&F neurons to implement

hard WTA behavior, by resetting all neurons in the array
simultaneously, as soon as the winning neuron fired; and

Chicca et al. [15] presented a recurrent network of spiking

neurons, comprising 31 excitatory neurons and 1 global
inhibitory neuron. This network is an evolution of the one

presented in [40] which includes second neighbor excit-

atory connections (in addition to first neighbor excitation),
and can be operated in open-(linear array) or closed-loop

(ring) conditions. Figure 2 shows experimental data mea-

sured from the chip, describing how it is able to perform
nonlinear selection, one of the typical soft WTA network

behaviors (see also Fig. 1). An input stimulus (see Fig. 2a)

consisting of Poisson trains of spikes, with a mean

frequency profile showing two Gaussian-shaped bumps

with different amplitude, is applied to the input synapses of
each neuron in the soft WTA network. The chip output

response is a series of spike trains produced by the 32

silicon neurons (see Fig. 2b). The mean frequencies mea-
sured from each spike raster in Fig. 2b show how the soft

WTA network (blue line) selects and amplifies the

Gaussian bump with higher activity while suppressing the
other one, with respect to the baseline condition (no

recurrent connections, green line).
More recent hardware implementations of the spiking

soft WTA network have been realized by the authors.

These chips comprise both larger numbers of neurons (e.g.,
up to 2048) and spike-based learning capabilities (see

‘‘Spike-Based Learning’’ section).

Spike-Based Learning

An additional feature that is crucial for implementing
cognitive systems with networks of spiking neurons is

spike-based plasticity. Plasticity is one of the key proper-

ties of biological synapses, which provides the brain with
the ability to learn and to form memories. In particular,

long-term plasticity (LTP) is a mechanism which produces

activity-dependent long-term changes in the synaptic
strength of individual synapses, and plays a crucial role in

learning [1]. A popular class of LTP spike-driven learning

mechanisms, that has recently been the subject of wide-
spread interest, is the one based on spike-timing dependent

plasticity (STDP) [1, 46]. In STDP, the relative timing of

pre- and post-synaptic spikes determine how to update the
efficacy of a synapse. In VLSI networks of spiking neu-

rons, STDP-type mechanisms map very effectively onto

silicon. Several examples of STDP learning chips have
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Fig. 2 Raster plot and mean frequency profile of input stimulus (a)
and network response (b). The input stimulus (a) consists of Poisson
trains of spike, the mean frequency profile over neuron address shows
two Gaussian-shaped bumps of activity with different amplitude. b
The soft WTA network response shows how the bump with higher

amplitude is selected and amplified while the other one is suppressed.
The response of the feed-forward network (no recurrent connections)
to the input, is shown for comparison (green curve in the mean
frequency profile)
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Sequence learning “program”Kreiser et al. Sequence Learning in a Neuromorphic Device

Figure 4. The serial order architecture, introduced by Sandamirskaya and Schöner (2010). (a) The
continuous version of the serial order architecture. A set of discrete neural-dynamic nodes represents
ordinal positions within a sequence. The content Dynamic Neural Field (DNF) represents the perceptual or
motor features of the stored items. A sequence of items is learned in adaptive connections between the
ordinal nodes and the content DNF. (b) The neuromorphic realization of the architecture using populations
of neurons. Note that in order to create stabilized peaks of activation that correspond to self-sustained
activation of a neural population, neurons within a group need to be recurrently connected. CoS is the
condition of satisfaction system that detects sequential transitions both during sequence learning and
acting-out.

here if an item was successfully learned and there’s no perceptual input (Laser off) the ordinals recall the202

learned item -¿ activity in the content DNF. Since the DNF is connected to the CoS, successful learning203

and not perceiving visual input anymore triggers the transition. (DVS on population is off -¿ no inhibition204

of CoS, but activation from content. When the laser is switched on the DVS on population becomes active205

and inhibits the CoS, next item can be learned. During sequence replay, on the other hand, the activity peak206

in the content DNF is supported by the active ordinal node. When the CoS becomes active and inhibits the207

ordinal nodes, the activity in the content DNF also ceases. In both cases, the decrease of activity in the208

content DNF leads to deactivation of the CoS node, which releases the inhibition on the ordinal nodes. The209

next ordinal node can become active now, driven by the asymmetric connection from the previous memory210

node.211

Fig. 4b shows how this neural dynamic architecture can be realized with populations of spiking neurons – a212

step required for the implementation in neuromorphic hardware (Sandamirskaya, 2013). Several constraints213

have to be taken into account: (1) the limited amount of silicon neurons, (2) robustness to mismatch, and214

(3) shared parameter settings across all neurons that need to exhibit different firing behaviors.215

To cope with mismatch, we used populations of 10-20 neurons to represent a neuronal node (ordinal,216

memory, or CoS nodes).217

Ordinal groups: Each ordinal group contains 20 silicon neurons in our experiments, inter-connected via218

excitatory synapses in an all-to-all fashion. Silicon neurons in different ordinal groups inhibit each other,219

forming a WTA network. This allows only one ordinal group to be active at a time.220

Memory groups: each ordinal group excites a corresponding memory group that contains 10 neurons.221

Memory groups remain active for the whole trial due to their high self-excitation. Each memory group has222

excitatory synapses to the next ordinal group. At the same time, they signal whether their corresponding223

This is a provisional file, not the final typeset article 8
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Kreiser et al. Sequence Learning in a Neuromorphic Device

Figure 4. The serial order architecture, introduced by Sandamirskaya and Schöner (2010). (a) The
continuous version of the serial order architecture. A set of discrete neural-dynamic nodes represents
ordinal positions within a sequence. The content Dynamic Neural Field (DNF) represents the perceptual or
motor features of the stored items. A sequence of items is learned in adaptive connections between the
ordinal nodes and the content DNF. (b) The neuromorphic realization of the architecture using populations
of neurons. Note that in order to create stabilized peaks of activation that correspond to self-sustained
activation of a neural population, neurons within a group need to be recurrently connected. CoS is the
condition of satisfaction system that detects sequential transitions both during sequence learning and
acting-out.

here if an item was successfully learned and there’s no perceptual input (Laser off) the ordinals recall the202

learned item -¿ activity in the content DNF. Since the DNF is connected to the CoS, successful learning203

and not perceiving visual input anymore triggers the transition. (DVS on population is off -¿ no inhibition204

of CoS, but activation from content. When the laser is switched on the DVS on population becomes active205

and inhibits the CoS, next item can be learned. During sequence replay, on the other hand, the activity peak206

in the content DNF is supported by the active ordinal node. When the CoS becomes active and inhibits the207

ordinal nodes, the activity in the content DNF also ceases. In both cases, the decrease of activity in the208

content DNF leads to deactivation of the CoS node, which releases the inhibition on the ordinal nodes. The209

next ordinal node can become active now, driven by the asymmetric connection from the previous memory210

node.211

Fig. 4b shows how this neural dynamic architecture can be realized with populations of spiking neurons – a212

step required for the implementation in neuromorphic hardware (Sandamirskaya, 2013). Several constraints213

have to be taken into account: (1) the limited amount of silicon neurons, (2) robustness to mismatch, and214

(3) shared parameter settings across all neurons that need to exhibit different firing behaviors.215

To cope with mismatch, we used populations of 10-20 neurons to represent a neuronal node (ordinal,216

memory, or CoS nodes).217

Ordinal groups: Each ordinal group contains 20 silicon neurons in our experiments, inter-connected via218

excitatory synapses in an all-to-all fashion. Silicon neurons in different ordinal groups inhibit each other,219

forming a WTA network. This allows only one ordinal group to be active at a time.220

Memory groups: each ordinal group excites a corresponding memory group that contains 10 neurons.221

Memory groups remain active for the whole trial due to their high self-excitation. Each memory group has222

excitatory synapses to the next ordinal group. At the same time, they signal whether their corresponding223
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Figure 12. Learning a sequence of cued locations with a robot. Top, left. The output of the Dynamic vision
Sensor (DVS) camera of the robot: events from rows of the DVS over time. Regions with high activity
correspond to horizontal positions of locations, cued with a laser pointer. Top, right. Plastic synapses after
learning. Dark red dots are synapses with high weights (only synapses from ordinal populations to the
content DNF are probed here). Middle Spiking activity of neurons on the ROLLS chip during the robotic
sequence learning experiment, in which sequence of three locations was learned (A-C-B) and reproduced
by turning to center respective location in the field of view of the robot’s DVS (the mapping from position
in the camera’s FoV and angle of rotation was hard-coded here for simplicity). Bottom. Snapshots of the
experiment from an overhead camera. See main text for details.
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Map formation: Path integration in 2D

Moser et al. Annual Review of Neuroscience 2008 

“Grid cells”

took 60 minutes (at 50ms time step); the simulated maps’
area was 2x2m2. Qualitatively, the simulation results show a
faithful representation of the environments.

(a) Environment1 (b) Encoded map1 (c) True collision map1

(d) Environment2 (e) Encoded map2 (f) True collision map2

(g) Environment3 (h) Encoded map3 (i) True collision map3

Fig. 9: Maps learned after 60 min of simulation. The first
column shows simulation environments, the second and third
columns show the learned maps reconstructed from plastic
synaptic weights between PN and CON and the true collision
map, respectively.

To measure the quality of the learned maps quantitatively,
we assigned a score to each learned collision position of the
robot. The score was evaluated using a Gaussian blurring
filter when computing correlation between the ground-truth
and neural-based maps. If the learned position was the same
as the true collision position, the system scored 1 point, if
the learned position deviated from the true position by 1
neuron unit in any direction, the system scored 0.5 point,
etc. The score of the encoded maps was growing linearly
with simulation time, with a slope of 0.25-0.3 of the ideal
score (plots can not be shown here for space constraints),
which reflects accumulation of error at a constant rate during
simulation, due to the accumulation of discretization errors
in both heading direction and position networks.

C. Dynamic mapping
In this section, we demonstrate how depression in plastic

synapses can be used to learn a map in a changing envi-
ronment (also known as dynamic mapping, Fig. 10). The
simulation shown in Fig. 10 was run for 35 minutes. We

started with an environment shown in Fig. 10(a). After 5
minutes of simulation time (at 50ms simulation step), the
inside walls were removed while the robot continued to
navigate in the environment. The final environment is as
shown in Fig. 10(c).

Fig. 10: Demonstration of dynamic mapping. At the begin-
ning, the robot is confined with walls in a small square space
(a). The walls are replaced after 5 minutes forming a larger
square (c). The robot is able to unlearn the previous map.

The map encoded in the plastic synapses after 5 minutes
of simulation is shown in Fig. 10(b). Fig. 10(d) shows the
encoded map after the simulation ended. These results show
that the previously learned collision positions were unlearned
after the walls were removed, if the robot passed the respec-
tive position again without a collision. Our SNN SLAM is
thus not only able to learn the map of a static environment,
but also update the map in a dynamic environment, using
synaptic depression and potentiation.

D. Neuromorphic realization
Fig. 11 shows activity of spiking neurons on the neuro-

morphic device Dynap-se [32] that were wired up to form
the path-integrating architecture. The first plot in the figure
shows the arrangement of neurons on the 4 chips of the
Dynap-se device (each chip being divided into 4 cores of
256 neurons). Figs. 11(2-6) show snapshots of activity on the
chip as the robot turns left (0-9s), stops turning and continues
moving to the west (11s), and then turns to the right, moving
in East direction after 24 seconds of simulation, Fig. 11(6). In
the PN and IPN neural populations, one can observe that the
activity moves according to activity in the HD population,
which is driven by the Turn populations (TR or TL). The
activity peak in the PN population is marked with a black
circle around the purple spikes.

A spiking neural network realized with neuromorphic
hardware is thus able to represent and update the position
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Motor control, learning

• PI-controller with spiking silicon neurons 

• On-chip learning of feedforward control

• Easy to integrate with other SNN models

Glatz, S.; Kreiser, R.; Martel, J. N. P.; Qiao, N. & Sandamirskaya, Y. Adaptive motor control and learning in a spiking neural 
network, fully realised on a mixed-signal analog/digital neuromorphic processor. ICRA, arxiv, 2019 



Motor control: results
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Why are these architectures fundamental?

➡ Adaptive motor control
- key element for adaptive 

behavior
Glatz et al, arxiv, 2018 

took 60 minutes (at 50ms time step); the simulated maps’
area was 2x2m2. Qualitatively, the simulation results show a
faithful representation of the environments.

(a) Environment1 (b) Encoded map1 (c) True collision map1

(d) Environment2 (e) Encoded map2 (f) True collision map2

(g) Environment3 (h) Encoded map3 (i) True collision map3

Fig. 9: Maps learned after 60 min of simulation. The first
column shows simulation environments, the second and third
columns show the learned maps reconstructed from plastic
synaptic weights between PN and CON and the true collision
map, respectively.

To measure the quality of the learned maps quantitatively,
we assigned a score to each learned collision position of the
robot. The score was evaluated using a Gaussian blurring
filter when computing correlation between the ground-truth
and neural-based maps. If the learned position was the same
as the true collision position, the system scored 1 point, if
the learned position deviated from the true position by 1
neuron unit in any direction, the system scored 0.5 point,
etc. The score of the encoded maps was growing linearly
with simulation time, with a slope of 0.25-0.3 of the ideal
score (plots can not be shown here for space constraints),
which reflects accumulation of error at a constant rate during
simulation, due to the accumulation of discretization errors
in both heading direction and position networks.

C. Dynamic mapping
In this section, we demonstrate how depression in plastic

synapses can be used to learn a map in a changing envi-
ronment (also known as dynamic mapping, Fig. 10). The
simulation shown in Fig. 10 was run for 35 minutes. We

started with an environment shown in Fig. 10(a). After 5
minutes of simulation time (at 50ms simulation step), the
inside walls were removed while the robot continued to
navigate in the environment. The final environment is as
shown in Fig. 10(c).

Fig. 10: Demonstration of dynamic mapping. At the begin-
ning, the robot is confined with walls in a small square space
(a). The walls are replaced after 5 minutes forming a larger
square (c). The robot is able to unlearn the previous map.

The map encoded in the plastic synapses after 5 minutes
of simulation is shown in Fig. 10(b). Fig. 10(d) shows the
encoded map after the simulation ended. These results show
that the previously learned collision positions were unlearned
after the walls were removed, if the robot passed the respec-
tive position again without a collision. Our SNN SLAM is
thus not only able to learn the map of a static environment,
but also update the map in a dynamic environment, using
synaptic depression and potentiation.

D. Neuromorphic realization
Fig. 11 shows activity of spiking neurons on the neuro-

morphic device Dynap-se [32] that were wired up to form
the path-integrating architecture. The first plot in the figure
shows the arrangement of neurons on the 4 chips of the
Dynap-se device (each chip being divided into 4 cores of
256 neurons). Figs. 11(2-6) show snapshots of activity on the
chip as the robot turns left (0-9s), stops turning and continues
moving to the west (11s), and then turns to the right, moving
in East direction after 24 seconds of simulation, Fig. 11(6). In
the PN and IPN neural populations, one can observe that the
activity moves according to activity in the HD population,
which is driven by the Turn populations (TR or TL). The
activity peak in the PN population is marked with a black
circle around the purple spikes.

A spiking neural network realized with neuromorphic
hardware is thus able to represent and update the position
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Fig. 9: Maps learned after 60 min of simulation. The first
column shows simulation environments, the second and third
columns show the learned maps reconstructed from plastic
synaptic weights between PN and CON and the true collision
map, respectively.

To measure the quality of the learned maps quantitatively,
we assigned a score to each learned collision position of the
robot. The score was evaluated using a Gaussian blurring
filter when computing correlation between the ground-truth
and neural-based maps. If the learned position was the same
as the true collision position, the system scored 1 point, if
the learned position deviated from the true position by 1
neuron unit in any direction, the system scored 0.5 point,
etc. The score of the encoded maps was growing linearly
with simulation time, with a slope of 0.25-0.3 of the ideal
score (plots can not be shown here for space constraints),
which reflects accumulation of error at a constant rate during
simulation, due to the accumulation of discretization errors
in both heading direction and position networks.

C. Dynamic mapping
In this section, we demonstrate how depression in plastic

synapses can be used to learn a map in a changing envi-
ronment (also known as dynamic mapping, Fig. 10). The
simulation shown in Fig. 10 was run for 35 minutes. We

started with an environment shown in Fig. 10(a). After 5
minutes of simulation time (at 50ms simulation step), the
inside walls were removed while the robot continued to
navigate in the environment. The final environment is as
shown in Fig. 10(c).

Fig. 10: Demonstration of dynamic mapping. At the begin-
ning, the robot is confined with walls in a small square space
(a). The walls are replaced after 5 minutes forming a larger
square (c). The robot is able to unlearn the previous map.

The map encoded in the plastic synapses after 5 minutes
of simulation is shown in Fig. 10(b). Fig. 10(d) shows the
encoded map after the simulation ended. These results show
that the previously learned collision positions were unlearned
after the walls were removed, if the robot passed the respec-
tive position again without a collision. Our SNN SLAM is
thus not only able to learn the map of a static environment,
but also update the map in a dynamic environment, using
synaptic depression and potentiation.

D. Neuromorphic realization
Fig. 11 shows activity of spiking neurons on the neuro-

morphic device Dynap-se [32] that were wired up to form
the path-integrating architecture. The first plot in the figure
shows the arrangement of neurons on the 4 chips of the
Dynap-se device (each chip being divided into 4 cores of
256 neurons). Figs. 11(2-6) show snapshots of activity on the
chip as the robot turns left (0-9s), stops turning and continues
moving to the west (11s), and then turns to the right, moving
in East direction after 24 seconds of simulation, Fig. 11(6). In
the PN and IPN neural populations, one can observe that the
activity moves according to activity in the HD population,
which is driven by the Turn populations (TR or TL). The
activity peak in the PN population is marked with a black
circle around the purple spikes.

A spiking neural network realized with neuromorphic
hardware is thus able to represent and update the position

- state estimation, building 
representations  

➡ Simultaneous localisation and mapping: 
path integration, learning a map

Blatter et al, ISCAS, under rev; Kreiser et al 2018a, b  

➡ Reference frame transformations
- key for linking modalities  

Blum  et al 2017

➡ Braintenberg vehicle, sequences
- attractors in a sensory-motor loop

Milde et al 2017a,b; Kreiser et al 2018 



Take-home message

•embodied cognitive computing requires: 
- decision making
- memory

• these can be realised in neuronal dynamics (i.e. networks 
with recurrence)

• neural-dynamic architectures can be realised with spiking 
and continuous dynamics

• and can be interfaced to sensors and motors

➡ to create embodied neuromorphic cognitive systems
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