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Implementation in Autonomous Robots: EcoBot-I
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Implementation in Autonomous Robots: EcoBot-II OOBBIC

z Autonomous Robots, 2006
21(3):187-198

Route taken
towards the light

Light source

-
e 8 MFCs containing sewage sludge microbes
e World’ s 1%t to perform 4 tasks:

— Sensing

— Processing

— Actuation (photo-taxis)

— Communication

e World’ s 1°t to “eat’ raw difficult substrate e.g. flies or rotten
fruit

e World’ s 1°t to employ the O, cathode
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e World’ s 15t to collect

| its own food and water

e World’s 1%t to get rid
of its own waste

e Telemetry
' o SymBots - symbiotic
robots
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EcoBot-I1I, 2010; Artificial Life’12, MIT
Press, pp. 733-740
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morphology for
the robot’s
actuation

Soft body which is actuated to open and
close as a mouth for allowing liquid

food to flow in in order to be digested
by the MFCs aboard

IEEE Int Robots & Sys (IROS), 2015, 3888-3893
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* Critical parameters, e.g. biofilm thickness, biofilm composition and substrate
utilization rate are difficult to control/ measure in situ

 These difficulties can be overcome by modelling bioreactors with machine learning
(ML) techniques, whereby only system inputs and outputs are required (system
governing rules are run by algorithm)

* Artificial Neural Networks (ANNSs) have been utilized to tackle a diverse range of
problems

* ANNs have a parallel distributed structure and an ability to learn and produce good
estimated outputs for inputs that were not processed during the learning function of

the network
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\/ Architecture
Training and Testing the ANN
_ Training: R=0.99703 Validation: R=0.99588
For the training procedure, the data set was | 00|
randomly divided in g ) ',tﬁ |
« 70% (184 samples) for the training set, g A
* 15% (40 samples) for the validation set moi g
and w A
* 15% (40 samples) for the test set. T I ¥ L
Target Target
The majority of the value points are | TestReosa4ss 1
adequately close to the 45 degrees line, 600 5
which indicates a perfect fit of the 500, f |
modelled data to the real data. 50 ¢
g 300 A_"""".
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Validation of the ANN model

After the network was trained and tested, it was used to produce data (here voltage), for B_Cout type of MFCs.
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Artificial neural network simulating microbial fuel cells with different membrane materials and electrode
configurations, 2019. Journal of Power Sources, 436:226832
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Bioreactor wall building block configuration
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Living Architecture bioreactor wall installation
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to go to the toilet at night

Pee Power is seen as a
means of lowering cost of
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Many pupils are interested
in science and enjoyed
learning about the
technology
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MEFC scale-up investigation: big vs. small
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Project objectives:
* Inoculum investigation
* Phenotypic analysis

* Substrate investigation
* Liquid, gel-like - extrudable

* Substratum investigation |
* Chassis, membrane - extrudal =4 \ “
* Electrode investigation

* Conductive extrudable pastes

* EcoBot-II evaluation
Biomimetic & Biohybrid Systems, Springer, ISBN: 97836443298018 (Living Machmes 2017)
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Primary goal to produce an accurate model of bio-electrochemical processes that
govern Microbial Fuel Cells (MFCs) and map their behaviour according to key
parameters

The geometry of the electrodes is amongst key parameters determining efficiency of
MFCs due to the formation of a biofilm of anodophilic bacteria on the anode electrode

Simulate MFC electro-chemical processes by considering electrode geometry

Use Lattice Boltzmann to simulate fluid dynamics and the advection-diffusion
phenomena in the anode

Model verified by voltage and current data of a real MFC tested in the lab under
continuous flow
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‘V’ Architecture

Structure of modelling

Formation of the electrode
geometry and initialisation
of the parameters.

Calculation of fluid
dynamics with LBM

Calculation of MFC
outputs (bio-
electrochemical

Calculation of the
advection-diffusion
equation with LBM

UWE |5
Bristol | &5

WP 2

Simulation
Steps
reached

Biofilm formation
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Averaging microdynamics before simulation implies quantities
of interest are no longer boolean variables but probabilities of

presence which are continuous variables ranging in the intervalf' 7 (7‘ + At udi ALt ): 1/ f il 1'7(0 ) (7” t)

[0,1] ,

+ =1/ )i (0 i

'l -

Considerably decreases the statistical noise and computational | - [ 5 1 | |1
requirements ! )
LB is widely used for simulating fluid flow and can compare V5 — v 44 — 4
with traditional numerical techniques of CFD
Operating at microscopic level allows intuitive generalizations | _. . — 1 ) 1

to complex flow problems (i.e. flow in porous media).

In a general DdQ(z+1) LB fluid, the
macroscopic quantities, such as the local
density o0 or the velocity flow u are defined

Common example of LB fluid is the so-called D2Q9 model,
defined in two dimensions (D2) with nine variables, or
quantities per sites (Q9).

as:
D. von der Schulenburg et al. AIChE Journal 55 (2) (2009) R - P

494-504 p=X=0T pru

S. Bottero et al. Biofouling 29 (9) (2013) 1069—1086 ZEmll =Y1=01zi
T. R. Pintelon et al. Biotechnol Bioeng 109 (4) (2012) 1031-1042 l . l . \l . \l .
C. Picioreanu et al. App Environ Microbiol 70 (5) (2004) 3024—3040 S mdi fli uli

T. L. Stewart et al. Biotechnol Bioeng 77 (5) (2002) 577-588.
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Bio-electrochemical model of the MFC

After calculating the equilibrium of fluid dynamics and the concentration of the chemical

species, the output of MFC is studied using the following equations:
Y is the mediator yield, 7 is the mediator

molar mass, m is the number of electrons

MiTotal =Mired +Mlox during reduction of the intracellular mediator.

F is the Faraday constant, V, is the anode
compartment volume, C" is the concentration

Mlox (x,t+1)=Mlox (x,t)-Ygla+ylicell /mF 1 /Vadwi6aldsol.,, is the total current produced

and g, is the consumption rate of the substrate.

The double Monod equation is used to determine the consumption rate of the substrate:/ la= q Imax Cls / Cls
+Als Mlox /Miox +

The concentration overpotential based on the Nerst equation is defined by:A/ Imdgonc =KT, / FInL] (M ITo

The activation overpotential can be calculated by an approximation of the Butler-Volmer ,
equation:  7dact=/lcell /Ala [l0 R.
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Bio-electrochemical model of the MFC

The mechanism for the transfer of electrons to the anode is assumed to incorporate the existence of an
intracellular mediators and direct connection of cells to the electrode (by nanowires or by direct contact)

Kirchhoff's voltage law and Ohm's law can

Hcell =(FI0 —nlconc —
ndact )/(Rlint +Rlext )
values and the produced current Mired /s+Mlired

correlate the over-potential values, the resistance

Ohm's law provides the voltage produced

Vicell =1lcell Ritot =/lcell (
Rlint +Rlext)

Biofilm formation was used as an agent-based procedure to simulate the attachment and growth of biomass on
the electrode. This was done by a random selection in each time step of a predefined number of lattice cells (k,,)
to change their biomass concentration to a predefined initial value (Cb° = Ct))



Parameter Description Value
XY xZ Anode compartment dimensions 17 x 60 x 65mm
X Y g & Anode electrode dimensions 17 x 48 x 65mm
Lx x Ly Model lattice dimensions 60 x 65
[0) Electrode porosity 0.874
1% Fluid input velocity 1.758 - 10 *mm/s
v Kinematic viscosity 1.004mm?/s
T Dimensionless relaxation time (LBM) 0.6706
D Diffusion coefficient 0.0012mm?* /s
™D Dimensionless relaxation time (LBM) 0.5036
c:? Input substrate concentration 410 mg substrate | L
Mtotal Total amount of intracellular mediator 0.05 %
Y Intracellular mediator yield 0.5687 %
~ Mediator molar mass 663400 %&%
m Electrons provided during reduction 2¢
Qe Maximum consumption rate 8.48 m;”é’i::;l;“:';‘ft;w
Ks Half saturation constant for substrate 20 (mg substrate / L)
Krox Half saturation constant for oxidised mediator | 0.02 x Mtotal (mg mediator/L)
Io Exchange current density 0.001 A/m*
Ey Open circuit voltage 0.7V
Ross External ohmic resistance (load) 360 2
Rint Internal ohmic resistance 360 Q
K Predefined number of cells for attachment 200
gy Initial biomass concentration 450mg biomass | L
ce. Threshold biomass concentration 512.5 mg biomass / L

frsp‘r

Fraction of the biomass spreading

40%
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Future work

Flow dynamics and the advection-diffusion phenomena of chemicals are modelled in short time

intervals (seconds and minutes). Thus, the model can be utilised in predicting transitions of the
behaviour of a MFC from one state to another in this time span.

The model can include analysis of the effect of specified geometries and micro-structures on the
development of biofilms in a MFC and its electrical and chemical outputs, e.g. geometries based
data from X-ray tomographic microscopy.

More work can be focused towards the study of the permeability of biofilms and communication
between cells in the matrix.

While, in the simulated experiments the total concentration of the intracellular mediator is
regarded as constant and analogous to the biomass concentration, in reality, fractions of oxidised
and reduced forms of the mediator can vary.



An application of a ANN for MFCs

A forward-fed and back-propagation ANN with topology of 4-10-1 neurons was developed.
The four input neurons represent the four input parameters and the output neuron, the

voltage of the MFC.
The data set that was produced by laboratory experiments and comprises 264 samples (4

types of MFCs X 3 lab instances X 22 values of load resistances).

Hidden Layer
Input Layer
s 4
log(Load resistance) | I/ \ —=  _ & / \
\__.-/ KH < // :/ \\ Output Layer

/,

Cylinder material | 3
N

/1' Output voltage

Electrodes locations |

Cathode size | \_ = =
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Why 10 hidden neurons?

Different topologies of ANNs were tested with the neurons varying from 3 to 15; to study the effect
that the number of neurons in the hidden layer has onto the accuracy of the network.

Each topology was tested for 10 runs to alleviate a possible impact that the initial random
fragmentation of the data set has on the performance of the network.

Correlation coefficients of ANN with different number of neurons
e . . ot T T L ARLHL g
Distribution of correlation coefficients of the ANNSs outputs e = d
. . | L I |
is shown on the right. zosmest | L[ H|] j L L |
s | |
3 L T ! Y R =
. . 7 . . o [ =
The topologies providing the higher performance and being |5 **°| . J L5 L]
less affected by the initial random fragmentation of the data |¢ { ‘ | |
. S 0.9955 - |
set are with 10 and 15 neurons. ° | ‘ T !
0995+ T
"5 4 5 6 7 8 9 10 11 12 13 14 15
Numbers of neurons in hidden layer
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Summary

Using ANNs to predict MFC outputs is becoming a popular method due to their fast
implementation and their dissociation of the need for detailed knowledge of the underlying rules.

On the contrary, rule-based models involve developing an ensemble of highly accurate formulas
that describe all processes (physical, biological and electro-chemical) that occur within the system.

Developing this type of ANN would be a first step towards designing an efficient fast responding
controller for MFCs. As MFCs are susceptible to changes in the association of voltage and current,
conventional maximum power point tracking algorithms are inadequate, particularly when voltage

overshoot is observed. Thus, smarter techniques of energy harvesting control are required for
MECs.

The proposed ANN model was able to accurately simulate the overshoot phenomenon, which is an
indication of suboptimal system performance, especially in the higher current ranges, and is an
indication of ionic depletion in the anode.
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Future work

The element of time is going to be added in the ANN, in order to predict the outputs of a
MFC as a time series.

Dynamic ANNs with feedback will be used, that can be transformed between open-loop
and closed-loop modes. Closed-loop networks make multistep predictions. In other
words they continue to predict when external feedback is missing, by using internal
feedback.

One application for this is making time-series predictions of a bioreactor, where the last
value is usually known (open-loop prediction) or when the reading is not available, or

known to be erroneous (closed-loop prediction). The predictions can alternate between
open-loop and closed-loop form, depending on the availability of the last step’s reading.
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Future work

The prediction of a time series of the system’s output is achieved with a dynamic neural
network.

Namely, a nonlinear autoregressive network with exogenous inputs (NARX) was
employed to predict the voltage output of an MFC brick, given its previous outputs and the
feeding volumes of urine.

A NARX network can be detailed as:

y(&)=f(y(t-1),....y(t=d),x(t-1),...,x(t—d))

=o-

o -




"Living brick” design and fabrication

Bioreactor wall building blocks
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Validation of the ANN model

After the network was trained and tested, it was used to produce data (here voltage), for T_Cout type of MFCs.
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Artificial neural network simulating microbial fuel cells with different membrane materials and electrode
configurations, 2019. Journal of Power Sources, 436:226832
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Future work

Outputs of two 3D printed boxes:

* Blue line:
Voltage output

* Orange line:
Feeding volume

Measurement interval:

5 minutes

Computer modeling with reactor array
WP 2
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Future work

Response of Output Element 1 for Time-Series 1
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é sving . Computer modeling with reactor array
WP 2

Future work

Response of Output Element 1 for Time-Series 1
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é sving . Computer modeling with reactor array

WP 2
Future work
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Publications:
[1] Tsompanas, M.A., Adamatzky, A., leropoulos, I., Phillips, N., Sirakoulis, G.C. and

Greenman, J., 2018. Modelling microbial fuel cells using Lattice Boltzmann
methods. IEEE/ACM transactions on computational biology and bioinformatics.
(accepted — early access)

[2] Tsompanas, M.A., You, J., Wallis, L., Greenman, J. and leropoulos, |., 2019
“Artificial neural network simulating microbial fuel cells with different membrane
materials and electrode configurations.”, Journal of Power Sources. (under revision)



L Living
V Architecture Wall management
WP 4

Energy Management System

Design objectives

» Harvest maximum energy and simultaneously manage MFC sustainability using data
acquisition and cell switching

« As an application demonstration, actuate a window attached to the wall structure using
the power generated from the wall

« Demonstrate cold start operation
» Demonstrate the wall as a self-sustaining entity by managing energy collection and

dispersion vih -

Energy
Harvester

!

Storage

MFC Array >

Voltage

Power Motor

Storage Switch Boge Controller
controller

Application
Switch 1

Application
Switch 2

Cell Cell Application
recon figuration measurement Applications Switch 3
grid module
Application
Switch 4
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WP 4

EMS - building and operation

Tasks
* Dynamic reconfiguration
+ Data logging
*  Window actuation
» Temperature/humidity sensing

I Newcastle LIQUIFER
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University LAy ciBsl GROUP kﬁ!&!ﬁﬁ! b CSIC



PeePower® urinal - Glastonbury festival PILLEMELINDA - (CIBRIC




PeePower® urinal - Glastonbury festival BILL%&ATEELSI% DA OOBBIC
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After using Pee Power do you feel
more optimistic about the future of
sustainable toilets?
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All information displayed on this windows are certified by FeedbackNow. All dlients votes are
collected, stored and processed on FeedbackNow servers.

The PEE POWER® urinal has been field-trialled at the 2015, 2016, 2017 and 2019 Glastonbury music festival, with
>1000 people using it per day (= 500L-urine/day).
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* 20 MFC modules with 22 MFCs in each box
* 5 boxes in 4 fluidic cascades, connected electrically in parallel
* Integrated pH probe

Inoculated on 12/06/2018




