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Many New Application Areas for Robots

■ Self-driving cars

■ Logistics

■ Agriculture, mining

■ Collaborative production

■ Personal assistance

■ Space, search & rescue

■ Healthcare

■ Toys
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Need more cognitive abilities!



Some of our Cognitive Robots

3

Soccer Domestic service Mobile manipulation

■ Equipped with numerous sensors and actuators

■ Complex demonstration scenarios

Aerial inspectionBin picking



Some more of our Cognitive Robots
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Phenotyping TelepresenceHuman-robot collaboration

Rescue

■ Equipped with numerous sensors and actuators

■ Complex demonstration scenarios



Deep Learning 

■ Learning
layered
represen-
tations

■ Compositionality

5

[Schulz;
Behnke, 
KI 2012]



Neural Abstraction Pyramid 
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- Grouping  - Competition  - Completion

- Data-driven
- Analysis
- Feature extraction

- Model-driven
- Synthesis
- Feature expansion

Signals

Abstract features

[Behnke, Rojas, IJCNN 1998] [Behnke, LNCS 2766, 2003]



Iterative Image Interpretation

■ Interpret most obvious parts first

■ Use partial interpretation as context to iteratively resolve local ambiguities

7 [Behnke, Rojas, IJCNN 1998] [Behnke, LNCS 2766, 2003]



Neural Abstraction Pyramid for
Object-class Segmentation of RGB-D Video 

■ Recursive computation is efficient for temporal integration

8

Neural Abstraction Pyramid

[Pavel, Schulz, Behnke, Neural Networks 2017]



The Data Problem

■ Deep Learning in robotics (still) suffers from shortage of available examples

■ We address this problem in two ways:

1. Generating data:
Automatic data capture, 
online mesh databases, 
scene synthesis

2. Improving generalization:
Object-centered models,
deformable registration,
transfer learning, 
semi-supervised learning

9



RGB-D Object Recognition and Pose Estimation

10 [Schwarz, Schulz, Behnke, ICRA2015]

■ Transfer learning from large-scale data sets



Canonical View, Colorization

■ Objects viewed from different elevation

■ Render canonical view

■ Colorization based on distance from center vertical

11 [Schwarz, Schulz, Behnke, ICRA2015]



Pretrained Features Disentangle Data

■ t-SNE
embedding

12

[Schwarz, Schulz, 
Behnke ICRA2015]



Recognition Accuracy

■ Improved both category and instance recognition

■ Confusion: 

13

1:    pitcher /    coffe mug 2:    peach      /   sponge

[Schwarz, Schulz, Behnke, ICRA2015]



Amazon Robotics Challenge

■ Storing and picking of items

■ Dual-arm robotic system

14

[Amazon]
[Schwarz et al. ICRA 2018]



Object Capture and Scene Rendering
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■ Turntable + DLSR camera ■ Insertion in complex annotated scenes

[Schwarz et al. ICRA 2018]



Semantic Segmentation and Grasp Pose Estimation

■ Semantic segmentation using RefineNet [Lin et al. CVPR 2017]

■ Grasp positions in segment centers

16 [Schwarz et al. ICRA 2018]



Amazon Robotics Challenge 2017

17 [Schwarz et al. ICRA 2018]



Object Pose Estimation

■ Cut out individual 
segments

■ Use upper layer of 
RefineNet as input

■ Predict pose 
coordinates

18

Input

[Schwarz et al. ICRA 2018, Periyasamy et al. IROS 2018]

Predicted pose



Dense Convolutional 6D Object Pose Estimation

■ Extension of PoseCNN [Xiang et al. RSS 2018]

■ Dense prediction of object center and orientation, without cutting out

19 [Capellen et al., VISAPP 2020]

Prediction error

Orientation norm



Self-Supervised Surface Descriptor Learning

■ Feature descriptor should be constant under different transformations, viewing 
angles, and environmental effects such as lighting changes

■ Descriptor should be unique to facilitate matching across different frames or 
representations

■ Learn dense features using a contrastive loss

20

Known correspondences Learned features

[Periyasamy, Schwarz, Behnke Humanoids 2019]



Descriptors as Texture on Object Surfaces 

■ Learned feature channels used as textures for 3D object models

■ Used for 6D object pose estimation

21 [Periyasamy, Schwarz, Behnke Humanoids 2019]



Abstract Object Registration

■ Compare rendered and actual scene in feature space

■ Adapt model pose by gradient descent 

22

[Periyasamy, Schwarz, 
Behnke Humanoids 2019]
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Registration Examples

[Periyasamy, Schwarz, Behnke Humanoids 2019]



Learning from Synthetic Scenes

■ Cluttered arrangements from 3D meshes

■ Photorealistic scenes with randomized 
material and lighting including ground truth

■ For online learning & render-and-compare

■ Semantic segmentation on YCB Video Dataset

● Close to real-data accuracy

● Improves segmentation of real data

24 [Schwarz and Behnke, ICRA 2020]



Synthetic-to-Real Domain Adaptation

■ Generate images from 3D 
object meshes

■ Adapt the synthetic images to 
the real domain using un-
annotated real images (GAN 
loss)

■ Train downstream task using 
adapted images

■ Semantic segmentation 
results almost as good as 
trained with real images

■ Improved results in combina-
tion with real annotations

25 [Imbusch et al. CASE 2022]



T6D-Direct: Transformers for Multi-Object 6D Pose Direct Regression

■ Extends DETR: End-to-end object detection with transformers [Carion et al. ECCV 2020]

■ End-to-end differentiable pipeline for 6D object pose estimation

26 [Amini et al. GCPR 2021]

Encoder self-attention Object detections and decoder attention



Multi-Object 6D Pose Estimation using Keypoint Regression

27 [Amini et al. IAS 2022, Best Paper Award]



RoboCup 2022 in Bangkok
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Transfer Learning for Visual Perception

29

■ Encoder-decoder network 

■ Two outputs

● Object detection

● Semantic segmentation

■ Location-dependent bias

[Rodriguez et al. RoboCup 2019]

■ Detects objects that are hard to 
recognize for humans

■ Robust to lighting changes



Learning Omnidirectional Gait from Scratch

30 [Rodriguez and Behnke, ICRA 2021]

■ State includes joint positions and velocities, robot orientation, robot speed

■ Actions are increments of joint positions

■ Simple reward structure
● Velocity tracking
● Pose regularization
● Not falling
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■ Start with small velocities

■ Increase range of sampled velocities

Learning Curriculum

[Rodriguez and Behnke, ICRA 2021]
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Learned Omnidirectional Gait

■ Target velocity can be changed continuously

[Rodriguez and Behnke, ICRA 2021]



Learning Mapless Humanoid Navigation

33 [Brandenburger et al. IROS 2021]

■ Visual (RGB images) and nonvisual observations to learn a control policy and an 
environment dynamics model

■ Anticipate terminal states of success and failure

InferenceTraining



Learning Mapless Humanoid Navigation

34 [Brandenburger et al. IROS 2021]



Mobile Manipulation 
Robot Momaro

■ Four compliant legs ending in 
pairs of steerable wheels

■ Anthropomorphic upper body

■ Sensor head

● 3D LiDAR

● IMU, cameras

35 [Schwarz et al. Journal of  Field Robotics 2017]



DARPA Robotics Challenge

36



Allocentric 3D Mapping

■ Registration of egocentric maps 
by graph optimization

37 [Droeschel et al., Robotics and Autonomous Systems 2017]



DLR SpaceBot Cup 2015

■ Mobile manipulation in rough terrain

38 [Schwarz et al., Frontiers on Robotics and AI 2016]



DLR SpaceBot Camp 2015

Sven Behnke: Semantic Environment Perception 39



Autonomous Mission Execution

■ 3D mapping, 
localization,
mission and
navigation 
planning

40

■3D object 
perception 
and grasping

[Schwarz et al., Frontiers on Robotics and AI 2016]



Navigation
Planning

■ Costs from local height 
differences

■ A* path planning

41 [Schwarz et al., Frontiers on Robotics and AI 2016]



Considering Robot 
Footprint

■ Costs for individual wheel pairs 
from height differences

■ Base costs

■ Non-linear combination yields 
3D (x, y, θ) cost map

42

Scene                                 Wheel costs

Base costs                           Combined

[Klamt and Behnke, IROS 2017]



3D Driving Planning (x, y, θ): A*

■ 16 driving directions

■ Orientation changes

=> Obstacle between wheels

43

Costs

Height

[Klamt and Behnke, IROS 2017]



Making Steps

■ If non-drivable obstacle in front of 
a wheel

■ Step landing must be drivable

■ Support leg positions must be 
drivable

44 [Klamt and Behnke, IROS 2017]



Planning for a Challenging Scenario

45 [Klamt and Behnke, IROS 2017]



Centauro Robot

46

[Tsagarakis et al., IIT 2017]

▪ Serial elastic actuators

▪ 42 main DoFs

▪ Schunk hand

▪ 3D laser

▪ RGB-D camera

▪ Color cameras

▪ Two GPU PCs



Hybrid Driving-Stepping Locomotion Planning: Abstraction

■ Planning in the here and now

■ Far-away details are abstracted away

47 [Klamt and Behnke,  IROS 2017, ICRA 2018]



Hybrid Driving-Stepping Locomotion Planning: Abstraction

48 [Klamt and Behnke,  IROS 2017, ICRA 2018]



Learning Cost Functions of Abstract Representations

Cost function

[Klamt and Behnke,  ICRA 2019]49



Abstraction CNN

■ Predict feasibility and costs of local detailed planning

/ x

xx.yy

Training data

• generated with random obstacles, walls, staircases

• costs and feasibility from detailed A*-planner
• ~250.000 tasks

50 [Klamt and Behnke,  ICRA 2019]



Learned Cost Function: Abstraction Quality

■ CNN predicts feasibility and costs better than manually tuned geometric 
heuristics 

51 [Klamt and Behnke,  ICRA 2019]



Experiments – Planning Performance

■ Learned heuristics accelerates planning, 
without increasing path costs much

Heuristic preprocessing: 239 sec

Geometric heuristic

Abstract representation

heuristic

52 [Klamt and Behnke,  ICRA 2019]



CENTAURO Evaluation @ KHG: Locomotion Tasks

53 [Klamt et al. RAM 2019]



Transfer of Manipulation Skills

Knowledge 
Transfer

54 [Rodriguez and Behnke ICRA 2018]



Learning a Latent Shape Space

■ Non-rigid registration of instances and canonical model

■ Principal component analysis of deformations 

55 [Rodriguez and Behnke ICRA 2018]



Interpolation in Shape Space

56 [Rodriguez and Behnke ICRA 2018]



Shape-aware Non-rigid Registration

57

■ Partial view of novel instance
■ Deformed canonical model

[Rodriguez and Behnke ICRA 2018]



Shape-aware Registration for Grasp Transfer

58

■ Full point cloud ■ Partial view 

[Rodriguez and Behnke ICRA 2018]



Constrained Trajectory Optimization:

■ Collision avoidance

■ Joint limits

■ Time minimization

■ Torque optimization

Collision-aware Motion Generation

59 [Pavlichenko et al., IROS 2017]



Grasping an Unknown Power Drill and Fastening Screws

60 [Rodriguez and Behnke ICRA 2018]



CENTAURO: Complex Manipulation Tasks

61 [Klamt et al. RAM 2019]



Regrasping for Functional Grasp

■ Direct functional grasps not always feasible

■ Pick up object with support hand, such that it can be grasped in a functional way

62 [Pavlichenko et al. Humanoids 2019]



63 [Pavlichenko et al. Humanoids 2019]

Regrasping Experiments



Micro Aerial Vehicles: Hierarchical Navigation

64

Obstacle avoidance

Egocentric planning

Allocentric planning

Mission plan

Request

Speed

Trajectory

Semantic
map

Allocentric
map

Egocentric
map

User

Mission planning

Allocentric planning

Egocentric planning

Copter

Obstacle
map

Onboard computer

Operator station

20 Hz

2 Hz

0.2Hz

<0.02 Hz

Obstacle avoidance

Allocentr. plan

Observation poses

[Droeschel et al. JFR 2016]



InventAIRy: Autonomous Navigation in a Warehouse

65 [Beul et al. RA-L 2018]



InventAIRy: Detected Tags in Shelf

66 [Beul et al. RA-L 2018]



German Rescue Robotics Center

• Basis: DJI Matrice 600 Pro
• Sensors: Velodyne VLP 16, FLIR Boson, 2x FLIR BlackFly S
• Tiltable sensor head

Current demonstrator

• Basis: DJI Matrice 210 v2
• Sensors: Ouster OS-0, FLIR AGX, 2× Intel RealSense D455
• IP43 water resistance

Initial demonstrator

67



Modeling the Brandhaus Dortmund

68 [Rosu et al. SSRR 2019]



Real-time LiDAR Odometry with Continuous-time Trajectory 
Optimization

■ Simultaneous registration of multiple 
multiresolution surfel maps using Gaussian mixture 
models and temporally continuous B-spline

■ Accelerated by sparse permutohedral voxel grids 
and adaptive choice 
of resolution

■ Real-time onboard
processing 16-20 Hz

■ Open-Source 
https://github.com/AIS-Bonn/
lidar_mars_registration

[Quenzel and Behnke, IROS 2021]69



3D LiDAR Mapping

70

DRZ Living Lab

[Quenzel and Behnke, IROS 2021]



Semantic Perception: LiDAR Segmentation

■ LatticeNet segmentation of 3D point clouds based on sparse permutohedral grid

■ Hierarchical information aggregation through U-Net architecture

■ LatticeNet is real-time capable and achieves excellent results in benchmarks

[Rosu et al., RSS 2020]71



Semantic Fusion: 3D LiDAR Mapping

Segmented point cloud

Categories:
• Building
• Floor
• Persons
• Vehicles
• Fence
• Vegetation

Minimax-Viking fire house

Semantic multiresolution surfel map

72



Semantic Fusion: Temporal LatticeNet

■ Semantic segmentation of sequences of 3D point clouds

■ Integration of recurrent connections

■ Trained on three scans of SemanticKITTI

■ Distinguishing moving from parking vehicles

Semantic multiresolution surfel map

[Rosu et al. Autonomous Robots 2021]

Categories:
• Street
• Moving Vehicle
• Parking Vehicle
• Vegetation



Onboard Multimodal Semantic Fusion

■ Real-time semantic segmentation and object
detection (≈9Hz) with EdgeTPU / iGPU
● SalsaNext for LiDAR
● DeepLabv3 for RGB images
● SSD MobileDet for Thermal/RGB

■ Late-fusion for
● Point cloud
● Image segmentation

74 [Bultmann et al. ECMR 2021, RAS 2022]



Predictive Angular Potential Field-based Obstacle Avoidance

■ Aggregate LiDAR scans in range image

■ Adjust direction using angular potential field

■ Predict trajectory and range image

■ Scale velocity based on time-to-contact

[Schleich and Behnke, IROS 2022]75

Angular Potential Field

Aggregated scanCurrent scan



Dynamic 3D Navigation Planning

■ Positions and 
velocities in 
sparse local 
multiresolution
grid

■ Adaptation of
movement 
primitives to 
grid

■ Optimization of
flight time and 
control costs

■ 1 Hz replanning 

[Schleich and Behnke, ICRA 2021]76



Planning with Visibility Constraints

■ Extra costs for flight through 
unmapped volumes

■ Consideration of sensor frustum:

● Coupling of vertical and horizontal 
motion

● Preferred forward flight with limited 
rotational speed

Obstacle map

Initial trajectory Optimized trajectory
77



Observation Pose Planning

■ Planning of observation poses with line of sight to the target object despite 
occlusions

■ Target objects are defined by position, 
line of sight and distance

■ Optimization of observation poses with regard 
to visibility quality and accessibility

Initial observation pose Optimized path Top-down view
78



Autonomous Flight without GNSS

DRZ Dortmund79



Exploration

■ Definition of target 
area w.r.t. satellite 
images or maps

■ Simple exploration 
patterns (spirals, 
meanders, …)

■ Collision check

■ TSP to determine 
segment sequence

■ Continuous 
replanning

Campus Poppelsdorf



Autonomous Exploration

DRZ Dortmund81



Terrain Classification for Traversability

■ Based on voxel-
filtered aggregated 
point cloud

■ Terrain classification 
based on local height 
differences in the 
robot ground robot 
footprints

■ Categories: drivable, 
walkable, unpassable 

■ Reachability analysis

[Schleich et al., ICUAS 2021]

Terrain category Reachability

Local height differencesAggregated colored point cloud

82



Real-Time Multi-View 3D Human Pose Estimation using Semantic 
Feedback to Smart Edge Sensors

■ Triangulation and skeleton model to recover 3D pose

■ Semantic feedback channel for bidirectional communication 
between backend and sensors

83 [Bultmann and Behnke, RSS 2021]



Real-Time Multi-View 3D Human Pose Estimation using Semantic 
Feedback to Smart Edge Sensors

■ Feedback heatmap is rendered from feedback skeleton and fused with 
detection on sensors

■ Feedback heatmap helps 
to recover from incorrect 
or imprecise 2D joint 
detections

■ Examples:

● Occluded left wrist 
(rows 1 and 2)

● Confusion of left and 
right elbow (row 3)

84 [Bultmann and Behnke, RSS 2021]



Semantic Perception with Smart Edge Sensor Network

■ Object detection and 
semantic segmentation 
of RGB images

■ Person detection in IR 
images

■ Semantic labelling of 
RGB-D point clouds

■ Pose estimation for 
mobile robot and chairs

85 [Bultmann and Behnke: IAS 2022]

(a) Smart Edge Sensor with Jetson NX  (b) 3D semantic scene model, 
(c) RGB and (d) thermal detections, (e) semantic segmentation



3D Human Pose Estimation with Occlusion Feedback

■ Heavy occlusion causes the 
pose estimation to collapse 
to the visible side only

■ With occlusion feedback 
occluded joint detections 
can be discarded and the 
local model is completed

86 [Bultmann and Behnke: IAS 2022]

With occlusion feedback      W/o occlusion feedback     Unoccluded reference                    Fully occluded



Evaluation in Real-World Multi-Person Scenes

87

■ 20 smart edge sensors (4 Jetson NX, 16 Edge TPU), covering 12×22 m area

■ Experiments with 8 persons moving through the scene

[Bultmann and Behnke: IAS 2022]



ANA Avatar XPRIZE Competition

88

■ Requires mobility, manipulation, human-human interaction

■ Focuses on the
immersion in 
the remote 
environment 
and the presence 
of the remote 
operator



■ Two-armed avatar robot designed for teleoperation with immersive visualization 
& force feedback

■ Operator station with HMD, exoskeleton and locomotion interface

89

NimbRo Avatar

[Schwarz et al. IROS 2021]



Team NimbRo Semifinal Submission

[Schwarz et al. IROS 2021]90



91 [Schwarz et al. IROS 2021]



■ 4K wide-angle stereo video stream

■ 6D neck allows full head movement

● Very immersive

■ Spherical rendering technique hides 
movement latencies

● Assumes constant depth

92

NimbRo Avatar: Immersive Visualization

[Schwarz and Behnke Humanoids 2021]

Exact for pure rotations Distortions for translations



NimbRo Avatar: Operator Face Animation

■ Operator images without HMD

■ Capture mouth and eyes

■ Estimate gaze direction 
and facial keypoints

■ Generate animated operator face using a warping neural network

93 [Rochow et al. IROS 2022]



NimbRo Avatar: Operator Face Animation

94 [Rochow et al. IROS 2022]



Finals Test Run Day 1

95



Haptic Perception

96

■ Sensors in the finger tips

■ Actuators 
on the 
hand 
exoskeleton



Haptics Perception
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Roughness Sensing
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Mems 

Microphone
Contact

Microphone

3D Hall
Sensor



Finals Day 2 Testing
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Team NimbRo
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FaDIV-Syn: Fast Depth-Independent View Synthesis

■ Two input views

■ Generate novel view from different 
pose

■ Does not require depth

■ Handles occlusions, transparency, 
reflectance, moving objects, …

101 [Rochow et al. RSS 2022]



FaDIV-Syn: Fast Depth-Independent View Synthesis

102 [Rochow et al. RSS 2022]



Multi-view Plant Reconstruction

■ 14× Nikon Z7 DSLR
camera

● 45 MP

● 64–25600 ISO

● 24-70 mm Lens

103



Multi-view Plant Reconstruction

■ Recovered camera poses 
and semi-dense point 
cloud through Multi-
View-Stereo

104 [Rosu 2022] 



Multi-view Plant Reconstruction

■ Geometry represented as Signed Distance Field (SDF)

■ Color represented as a direction-dependent color field

■ Transform SDF into radiance [1] and train similar to NeRF

Geometry Color at the zero level-set of the SDF

[1] Wang et al. NeuS: Learning Neural Implicit Surfaces by Volume 
Rendering for Multi-View Reconstruction, NeurIPS 2021.

105 [Rosu and Behnke, arXiv:2211.12562, 2022] 



Multi-view Plant Reconstruction

■ InstantNGP with a 
Multiresolution Hash 
Encoding [2]

■ Small MLPs for SDF 
and color

■ 25 M parameters

■ 1 h training on Nvidia 
RTX 3090 GPU

Surface 
normals

[2] Müller et al. Instant Neural Graphics 
Primitives with a Multiresolution Hash 
Encoding ACM Transactions on Graphics 
(SIGGRAPH 2022)

106 [Rosu and Behnke, arXiv:2211.12562, 2022] 



Multi-view Plant Reconstruction

■ InstantNGP with a 
Multiresolution Hash 
Encoding [2]

■ Small MLPs for SDF 
and color

■ 25 M parameters

■ 1 h training on Nvidia 
RTX 3090 GPU

Surface 
normals

[2] Müller et al. Instant Neural Graphics 
Primitives with a Multiresolution Hash 
Encoding ACM Transactions on Graphics 
(SIGGRAPH 2022)

107 [Rosu and Behnke, arXiv:2211.12562, 2022] 



Multi-view Plant Reconstruction

108

■ Rendered novel views

[Rosu and Behnke, arXiv:2211.12562, 2022] 



Plant Reconstruction over Multiple Days

Volumetric renders through 
SDF + color

109 [Rosu and Behnke, arXiv:2211.12562, 2022] 



Plant Reconstruction over Multiple Days

Predicted depth

110 [Rosu and Behnke, arXiv:2211.12562, 2022] 



High Geometric and Texture Detail

■ Marching cubes on the SDF to recover mesh

■ Learnable texture to match color images

■ Rendering in real time

Textured mesh Mesh normal vector

111 [Rosu and Behnke, arXiv:2211.12562, 2022] 



Conclusions

■ Developed capable robotic systems for challenging scenarios
● Bin picking
● Humanoid soccer
● Disaster response (UGV, UAV)
● Plant reconstruction

■ Challenges include
● 4D semantic perception
● High-dimensional motion planning

■ Promising approaches

● Prior knowledge (inductive bias)

● Shared experience (fleet learning)

● Shared autonomy (human-robot)

● Instrumented environments
112


