
labsNCL Neuromorphic Computing Lab

Neuromorphic cognition
and embodied AI:
from Neuroscience to Robotics
and Back

Yulia Sandamirskaya

Neuromorphic computing Lab, Intel Labs (Munich)

Shanghai Lecture, 01. Dec 2022

2NCL Neuromorphic Computing Lab

Algorithms for Artificial Intelligence Today

Image (video)
Label, ROI,
command

Sound sample Text, picture

3NCL Neuromorphic Computing Lab

Algorithms for Artificial Intelligence Today

Image (video)
Label, ROI,
command

Sound
sequence

Text, picture

and Tomorrow

?

labsNCL Neuromorphic Computing Lab

The Gains of Deep Learning Come at Increasing Cost

Source: ARK Investment Management LLC, “AI and Compute.” OpenAI, https://arkinv.st/2ZOH2Rr.
https://laptrinhx.com/news/the-cost-of-ai-training-is-improving-at-50x-the-speed-of-moore-s-law-why-it-s-still-early-days-for-ai-
jY1BQeq/

300,000x increase in
required training

computation over 6 years
vs 8x provided by the

Moore’s Law

? Efficiency
? Transparency, robustness
? Adaptivity

https://arkinv.st/2ZOH2Rr

5NCL Neuromorphic Computing Lab

Biological intelligence

•2.2g brain, 10 M neurons, 50 mW
• Navigates and learns “on the fly”
• Can learn words
• Can learn to manipulate objects

•1000g brain, 100 B neurons, 20 W
• Can do amazing things

• 1g brain, 1M neurons, 1mW
• Navigates and learns in unknown
environments “on the fly”

Adaptive
Flexible
Fast
Precise
Efficient

Can deal with real-
world complexity

Learn new tasks

“Cognitive”

Biological brains:

6NCL Neuromorphic Computing Lab

What can we learn from biology?
1. Diversity of neuron types, connectivity motives, network structures and topologies

Locust’s Giant Motion Detector neuron (LGMD) Olfactory circuits Fly’s head direction circuit

Neocortical layers Grid cell, hippocampal circuits Cerebellar architecture Basal ganglia

2. A lot of predetermined structure augmented with continual learning and plasticity

7NCL Neuromorphic Computing Lab

How can we learn from biology?
Ø We can learn specific neural circuits for different tasks

Ø We can learn architectural principles
1) Statful computing; states dynamically stabilitized
2) Loops (predictions, consitency checks)
3) (Autonomous) learning principles

3) A.J. Ijspeert, Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, vol.
21/4, pp. 642-653, 2008

A.J. Ijspeert / Neural Networks 21 (2008) 642–653 645

Fig. 1. Salamander CPG model tested with a amphibious salamander-like robot
(Ijspeert et al., 2007). The model is composed of 20 amplitude-controlled phase
oscillators. The oscillators receive a drive d signal representing the descending
stimulation from the Mesencephalic Locomotor Region (MLR) in the brain stem.
The outputs of the CPG are desired joint angle positions 'i that are used by a
Proportional-Derivative (PD) feedback controller (Vi are the voltages applied to the
motors and '̃i are the actual joint angles measured from incremental encoders). For
details see the text and (Ijspeert et al., 2007).

and walking, and provides potential mechanisms explaining the
automatic transition from walking to swimming by modulating
the electrical stimulation of the MLR (Figs. 1 and 2). The central
idea behind the model is that salamander bi-modal locomotion
can be explained by adding limb oscillatory centers with lower
intrinsic frequencies and lower saturation frequencies to a lamprey
swimming circuit. The model provides a potential explanation
of (i) how the body undulations switch between standing waves
during walking and travelling waves during swimming, (ii) why
salamanderswalk at low frequencies and swimat high frequencies,
and (iii) why there is a rapid increase of frequencies as soon at
the animal switches to swimming. Another amphibian that has
been modelled is the frog embryo (Roberts & Tunstall, 1990; Wolf
& Roberts, 1995). More generally other animals whose locomotor
CPGs have been numerically modelled include the leech (Lockery
& Sejnowski, 1993), the cockroach (Ghigliazza & Holmes, 2004;
Ritzmann, Quinn, & Fischer, 2004) and the cat (Ekeberg & Pearson,
2005; Ito, Yuasa, Luo, Ito, & Yanagihara, 1998; Kaske, Winberg, &
Cöster, 2003; Pribe, Grossberg, & Cohen, 1997; Rybak, Shevtsova,
Lafreniere-Roula, & McCrea, 2006; Rybak, Stecina, Shevtsova, &
McCrea, 2006; Yakovenko, McCrea, Stecina, & Prochazka, 2005).
Other related models are models that focus on quadruped gait
transitions at a more abstract level (Buchli & Ijspeert, 2004a;
Buono, 2001; Buono & Golubitsky, 2001; Canavier et al., 1997;
Collins & Richmond, 1994; Golubitsky, Stewart, Buono, & Collins,
1999; Kaske et al., 2003; Pribe et al., 1997; Schoner et al., 1990;
Schoner & Kelso, 1988).

For all these studies, the numerical models have proven to be
very useful tools to test hypotheses concerning the functioning of
CPGs. Since rhythm generation and locomotion are intrinsically
dynamical phenomena, numerical simulations allow one to test
whether a conceptual model of a locomotor circuit can actually
reproduce recorded animal locomotor patterns, and to explore
what needs to be modified in case the match to biological
data is poor. Numerical models are also useful to suggest new
experiments and predict their outcomes. Examples of experiments
whose outcomes were predicted by a model include (1) the
effect of mechanically moving the tail of the lamprey on the CPG
rhythms (Williams et al., 1990), (2) the effect of manipulating

Fig. 2. Gait transition from walking to swimming with the salamander CPG
model (Ijspeert et al., 2007). (A) output signals from the left body CPG oscillators
(oscillators on the right side are exactly in anti-phase). The numbering corresponds
to that of Fig. 1. Units are in radians (scale bar on the top right). The red
lines illustrate the transition from standing waves (with synchrony in the trunk,
synchrony in the tail, and an anti-phase relation between the two) to travelling
waves. (B) output signals from the left limb CPG oscillators. Ipsilateral fore and
hindlimbs are in anti-phase. (C) Instantaneous frequencies measured as in cycles/s.
(D) Linear increase of the drive signal applied to all oscillators. The horizontal red
lines correspond to the lower and upper oscillation thresholds for limb and body
oscillators in arbitrary drive units. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.).

intrinsic frequencies of the lamprey CPG by baths of different
concentrations (Sigvardt & Williams, 1996), and (3) the effect of
transecting inter-CPG couplings on the oscillation frequencies of
body and limb CPGs in the salamander (Ijspeert et al., 2007).

4. CPGs in robotics

In this section, I will now review how CPG models have been
used to control the locomotion of robots. The first part of this
sectionwill be devoted to CPGmodels as a new control technology,
while the second part will focus on how robots can be used as
scientific tools for testing hypotheses on biological CPGs, and the
pros and cons of such an approach.

4.1. CPGs for robot locomotion

As illustrated by Fig. 3, CPG models are increasingly used in
the robotics community. The types of CPG models implemented
in robots include connectionist models (Arena, 2000; Lu, Ma, Li,
& Wang, 2005), vector maps (Okada, Tatani, & Nakamura, 2002),
and systems of coupled oscillators (Crespi & Ijspeert, 2006; Ijspeert
et al., 2007; Kimura et al., 1999; Williamson, 1998). In some
rare cases spiking neural network models have been used (Lewis,
Tenore, & Etienne-Cummings, 2005). Virtually all implementations
involve sets of coupled differential equations that are numerically
integrated (on a microcontroller or a processor). Probably the only
exceptions are CPGs that are directly realized in hardware, i.e. on a
chip (DeWeerth, Patel, Simoni, Schimmel, & Calabrese, 1997; Lewis
et al., 2005; Nakada, Asai, & Amemiya, 2003; Simoni & DeWeerth,
2007) or with analog electronics (Still & Tilden, 1998). Also to
some extent related to CPG research are quasi-periodic motions
generated by chaotic maps (Kuniyoshi & Suzuki, 2004).

Models of CPGs have been used to control a variety of different
types of robots and different modes of locomotion. For instance

3)

3) CPGs for locomotion

1) Salt, L., Indiveri, G., & Sandamirskaya, Y. (2017, May). Obstacle avoidance with LGMD neuron: towards a neuromorphic
UAV implementation. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1-4). IEEE.

B. QUAV

(a) The experimental setup (b) The DVS output for a loom-
ing circle stimulus

Fig. 1: QUAV and example DVS output

A quadrotor UAV (QUAV) platform was built and used
to collect DVS data (Fig. 1a). The QUAV was custom made
using off the shelf parts. It was designed to be fairly compact
so that it could be used both in and outdoors. The drive-
train consisted of 20A electronic speed controllers (ESCs) and
Cobra2206-2100kv motors so that the QUAV could use 3S or
4S lithium polymer batteries. With 6045 propellers and a 4S
battery, the motors can provide 1.1kgs of thrust each at 100%
power output.

III. BUILDING AN LGMD MODEL

We constructed the LGMD model based on descriptions of
the locust’s neuron, available in [1]. The LGMD model consists
of a photoreceptor (P), a summing (S), and an LGMD neuron
layer. The neurons in these layers are typically modelled as
integrate and fire neurons: they sum up the inputs and spike if
the membrane potential exceeds a threshold [1]. These three
layers are connected by intermediate excitatory (E), inhibitory
(I), and feed-forward (F) connections, which are modelled as
linear threshold inter-neurons.

The feed-forward neurons (F) are intended to inhibit trans-
lational motion. The inhibitory connections (I) from the pho-
toreceptor to the summing layer inhibit non-looming stimuli.
The weights of the inhibitory connections are assigned based
on their distance from the central excitatory neuron. This
connection configuration spans the P layer like a kernel. This
model has been used previously to study collision avoidance
on robotic vehicles [1], [2].

The novel aspect of this work lies in the constraints of
the neuromophic processor computing platforms that we have
available in our group. These constraints are:

• The neuromorphic computing platform currently avail-
able has a total of at most 9k neurons.

• Each neuron has a fan-in of only 64 non-zero (pro-
grammable) synapses.

• Each neuron has a fan-out of 4000 units, but subdi-
vided into four distinct clusters.

• Each synaptic weight can assume one of four possible
analog values (two positive and two negative ones).

S

P

LGMD

IS

IP

(a)

Left Right Top Bottom

Left Right Down Up

LGMDs

DCMDs

(b)

Fig. 2: (a) The neuromorphic LGMD model. Black lines: ex-
citatory connections; red lines: inhibitory connections; dashed
lines: slower inhibitions; solid lines: faster inhibitions. (b)
The network topology for converting detected looms (LGDM
neurons) into steering directions (DCMD neurons). Solid lines:
excitatory connections; dashed lines: inhibitory connections.

• Excitatory and inhibitory synapse low pass filter cir-
cuits have shared parameters (same dynamics).

• There are two sets of parameters for choosing the type
of synapse dynamics (fast or slow).

A. Neuromorphic LGMD Model

The LGMD model introduced in the literature is not suit-
able for neuromorphic devices that have a limit on how many
synapses can be connected to a single neuron. Intermediate
layers between the LGMD neuron and the S and P layers
needed to be added to make the network compatible with
a neuromorphic processor (see Fig. 2a). Each 5 ⇥ 5 neurons
in the S layer in our model connect to each neuron in the
intermediate S (IS) layer which consists of 6 ⇥ 6 neurons.
Similarly, each 8 ⇥ 8 neurons in the P layer connect to each
neuron in the intermediate P (IP) layer which consists of 4⇥4
neurons. These layers are connected to the LGMD neuron with
an excitatory connection from the IS layer and an inhibitory
connection from the IP layer.

B. Adding Direction to the LGMD Model

The LGMD model can only signal whether or not an object
in the field of view is looming. This doesn’t provide any
information about the direction that the stimulus is coming
from, which is required for effective obstacle avoidance.

We split the field of view (FoV) into halves twice,
across the centre of the FoV both horizontally and vertically
(top/bottom and left/right) and implement an LGMD neuron
for each section: top, bottom, left, and right. This combina-
tion allows the use of the same network parameters as the
whole FoV implementation. Critically, this set-up doesn’t add
any additional neurons, which is important to adhere to the
neuromorphic processor constraints.

C. Translating the LGMD Output to Motor Response

To translate the directional LGMD model outputs into a
decision about an obstacle avoidance manoeuvre, we add four

B. QUAV

(a) The experimental setup (b) The DVS output for a loom-
ing circle stimulus

Fig. 1: QUAV and example DVS output

A quadrotor UAV (QUAV) platform was built and used
to collect DVS data (Fig. 1a). The QUAV was custom made
using off the shelf parts. It was designed to be fairly compact
so that it could be used both in and outdoors. The drive-
train consisted of 20A electronic speed controllers (ESCs) and
Cobra2206-2100kv motors so that the QUAV could use 3S or
4S lithium polymer batteries. With 6045 propellers and a 4S
battery, the motors can provide 1.1kgs of thrust each at 100%
power output.

III. BUILDING AN LGMD MODEL

We constructed the LGMD model based on descriptions of
the locust’s neuron, available in [1]. The LGMD model consists
of a photoreceptor (P), a summing (S), and an LGMD neuron
layer. The neurons in these layers are typically modelled as
integrate and fire neurons: they sum up the inputs and spike if
the membrane potential exceeds a threshold [1]. These three
layers are connected by intermediate excitatory (E), inhibitory
(I), and feed-forward (F) connections, which are modelled as
linear threshold inter-neurons.

The feed-forward neurons (F) are intended to inhibit trans-
lational motion. The inhibitory connections (I) from the pho-
toreceptor to the summing layer inhibit non-looming stimuli.
The weights of the inhibitory connections are assigned based
on their distance from the central excitatory neuron. This
connection configuration spans the P layer like a kernel. This
model has been used previously to study collision avoidance
on robotic vehicles [1], [2].

The novel aspect of this work lies in the constraints of
the neuromophic processor computing platforms that we have
available in our group. These constraints are:

• The neuromorphic computing platform currently avail-
able has a total of at most 9k neurons.

• Each neuron has a fan-in of only 64 non-zero (pro-
grammable) synapses.

• Each neuron has a fan-out of 4000 units, but subdi-
vided into four distinct clusters.

• Each synaptic weight can assume one of four possible
analog values (two positive and two negative ones).

S

P

LGMD

IS

IP

(a)

Left Right Top Bottom

Left Right Down Up

LGMDs

DCMDs

(b)

Fig. 2: (a) The neuromorphic LGMD model. Black lines: ex-
citatory connections; red lines: inhibitory connections; dashed
lines: slower inhibitions; solid lines: faster inhibitions. (b)
The network topology for converting detected looms (LGDM
neurons) into steering directions (DCMD neurons). Solid lines:
excitatory connections; dashed lines: inhibitory connections.

• Excitatory and inhibitory synapse low pass filter cir-
cuits have shared parameters (same dynamics).

• There are two sets of parameters for choosing the type
of synapse dynamics (fast or slow).

A. Neuromorphic LGMD Model

The LGMD model introduced in the literature is not suit-
able for neuromorphic devices that have a limit on how many
synapses can be connected to a single neuron. Intermediate
layers between the LGMD neuron and the S and P layers
needed to be added to make the network compatible with
a neuromorphic processor (see Fig. 2a). Each 5 ⇥ 5 neurons
in the S layer in our model connect to each neuron in the
intermediate S (IS) layer which consists of 6 ⇥ 6 neurons.
Similarly, each 8 ⇥ 8 neurons in the P layer connect to each
neuron in the intermediate P (IP) layer which consists of 4⇥4
neurons. These layers are connected to the LGMD neuron with
an excitatory connection from the IS layer and an inhibitory
connection from the IP layer.

B. Adding Direction to the LGMD Model

The LGMD model can only signal whether or not an object
in the field of view is looming. This doesn’t provide any
information about the direction that the stimulus is coming
from, which is required for effective obstacle avoidance.

We split the field of view (FoV) into halves twice,
across the centre of the FoV both horizontally and vertically
(top/bottom and left/right) and implement an LGMD neuron
for each section: top, bottom, left, and right. This combina-
tion allows the use of the same network parameters as the
whole FoV implementation. Critically, this set-up doesn’t add
any additional neurons, which is important to adhere to the
neuromorphic processor constraints.

C. Translating the LGMD Output to Motor Response

To translate the directional LGMD model outputs into a
decision about an obstacle avoidance manoeuvre, we add four

1)

1) Sensing (LGMD, divergence-based landing)

2) Kreiser, R., Renner, A., Sandamirskaya, Y., & Pienroj, P. (2018, October). Pose estimation and map formation with
spiking neural networks: towards neuromorphic SLAM. In IROS (pp. 2159-2166). IEEE.

2)

2) Navigation (hippocampal circuits, RatSLAM)

Collection of “solutions”
Algorithm, Mechanisms)

Principles, laws,
building blocks

Technology

“Bio” “Phys”

“Eng”

8NCL Neuromorphic Computing Lab

Example: object learning

8

§ Learning objects in a natural way

Best Paper at International Conference on Neuromorphic Systems (ICONS):
"Interactive continual learning for robots: a neuromorphic approach," E.
Hajizada, P. Berggold, M. Iacono, A. Glover, Y. Sandamirskaya

• 200x better energy per learning
instance and up to 150x for
inference

• The best execution time for learning
an instance and being on par with
other methods in inference time

Notice: All experiments run on a machine with Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz x8, 32GB RAM running Ubuntu 20.04.2 LTS, python 3.8.10, and v. 1.0.0 of the Intel
NxSDK in Loihi 1 hardware. All performance measurements are based on testing as of October 2021 and may not reflect all publicly available security updates. Results may vary.

9NCL Neuromorphic Computing Lab

Salience

Look

Events

Spatial memory

Attention dynamics

Neural
state
machine

IMU,
motor
sense Object learning / recognition

Combining with other behavioral
elements

Fixate Learn Recognize

10NCL Neuromorphic Computing Lab

Place cells , Grid cells Error monitoring and
correction

Kreiser et al, ISCAS 2018; Kreiser et al, IROS 2018, 2019; Kreiser at al, RAINR 2019; Tang, Michmizos, ACM Proc., 2018

X100 more energy efficient
compared to Gmapping on
CPU (i7-4850HQ) on 1D
SLAM

Spatial memories: forming and correcting a memory

11NCL Neuromorphic Computing Lab

Implementing neural architectures efficiently

PARALLEL
DENSE COMPUTE

OFFLI NE TRAI NI NG US I NG
LABELED DATAS ETS

PROGRAMMI NG BY
ENCODI NG

ALGORI THMS

S EQUENTI AL THREADS
OF CONTROL

S YNCHRONOUS
CLOCKI NG

S YNCHRONOUS
CLOCKI NG

PARALLEL
S PARS E COMPUTE

LEARN ON THE FLY
THROUGH LOCAL
LEARNI NG RULES

AS YNCHRONOUS
EVENT- BASED SPI KES

i f X t h e n
…

e l s e
…

01100
11010
00100

12NCL Neuromorphic Computing Lab

Neuromorphic hardware marketplace

TrueNorth
(IBM)

Loihi
(Intel)

Tianjic
(Tsinghua U)

1M-core
SpiNNaker

(HBP)

Braindrop
(Stanford)

DynapSEL
(SynSense / Baidu)

100M-neuron
Pohoiki Beach/Springs (Intel)

Mixed analog-digital
Chips

Digital
Chips

ROLLS
(ETH Zurich)

4M-neuron
BrainScaleS

(HBP)

64M-neuron
NS16e-4 (IBM)

DynapCNN
(SynSense / Baidu)

Large-Scale
Systems

Event-based
Vision

DAVIS240C
(IniVation)

18um

CeleX-IV
(CelePixel)

18um

DVS-Gen2
(Samsung)

9um

DVS-Gen3
(Samsung)

6um
Gen4 (Prophesee/Sony)

2014 2015 2016 2017 2018 2019 2020 2021

SpiNNaker 2
(Human Brain Project)

Darwin 2
(Zhejian Lab)

GrAI One
(GrAI Matter Labs)

120M-neuron
Darwin Mouse (Zhejiang U)

FENCE
(DARPA)

event-based IR

Akida
(BrainChip)

Innatera
(Delft)

Five years ago, Intel Labs announced
the Loihi neuromorphic test chip

Our mission: Pioneer a new programmable computing
technology inspired by a modern understanding of the brain

Loihi
60 mm2

Image: intel.com/content/www/us/en/research/neuromorphic-community.html

Loihi Neuromorphic
Research Chip

Nahuku board
with 32 Loihi chips

Pohoiki Springs system
with 768 Loihi chips

Research Community
with 180+ members

Loihi application proof points

Gesture recognition + learning
Loihi + DAVIS 240C camera

60 mW total power, 15 mW dynamic
Adaptive robotic arm control
40x lower power, 50% faster vs GPU

Scene understanding
Integrated behaviors: Object
recognition, tracking, learning

100x lower power SLAM vs CPU

Volume 2 Issue 3,
March 2020

Combinatorial optimization
(CSP, SAT, ILP, QP)

2,800x lower energy and
44x faster vs CPU

Olfaction-inspired odor
recognition and learning

3000x more data efficient learning
than a deep autoencoder

Last year, Intel entered a new era with
Intel Loihi 2 and open-source Lava framework

Open-Source and Community-Driven

Multi-Paradigm

Multi-Abstraction

Multi-Platform

Event-based communication

• Up to 10x faster processing
capability*

• Up to 60x more inter-chip
bandwidth*

• Up to 1 million neurons with
15x greater resource density*

• 3D scalable

• Native ethernet

• Programmable neurons

• Graded spikes

* specs and configuration
details can be found at
intel.com/neuromorphic

NCL Neuromorphic Computing Lab labs

Multi-Paradigm

Many others to come: NEF, Reservoir Computing, STICK, Equilibrium Propagation, evolutionary, …

Optimization

LCA, Stochastic SNNs
LASSO, QP,

CSP, ILP, QUBO

Neural Attractors

Dynamic Neural Fields,
Continuous Attractor NNs,

WTA

Deep Learning

Δ
Δ Δ

Δ
Δ

Δ
Δ Δ

ANN->SNN rate-coded conversion,
Directly trained SNN ConvNets
Sigma-Delta Neural Networks

TTFS- and Phase-coded SNNs

Vector Symbolic

HRRs, MAPs,
Binary Spatter Codes,
Sparse Block Codes,
Resonator Networks

+ model learning + associative learning + gradient learning + HD learning

Latest Lava Milestones and Results
• Intel added support for Loihi 2

features including
programmable neurons, graded
spikes, and continual learning.

• With the latest release of Lava
(v0.5) and Kapoho Point, Intel
Labs achieved 15x improved
energy efficiency and up to 12x
faster throughput for a deep
learning application.

Results may vary.

1 Loihi 2 SDNN results based on Lava v0.5 benchmarks in September,
2022 of 9-layer PilotNet DNN inference workload implemented as a
sigma-delta neural network on Loihi 2. Equivalent DNN op counts
calculated from a conventional DNN implementation with the same
topology and same number of 8-bit parameters. See Bojarski, Mariusz
et al. "End to end learning for self-driving cars." arXiv preprint
arXiv:1604.07316 (2016).

Loihi 1 SNN 3 Loihi 2 SNN 2 Loihi 2 SDNN 1

Mean-Square-Error 0.049 0.049 1 0.037 32% lower

Neuron cores 368 70 5x
smaller

70 5x
smaller

Latency (ms) 15.5 2.56 6x
faster

1.22 9-12x
fasterThroughput (fps) 808 4877 7404

Energy (uJ/frame) 1770 270 6.5x
better

120 15x more
efficientTOPS/W (DNN equiv) 0.02 0.13 0.28

2 Loihi 2 SNN measurements were obtained on Oheo Gulch board ncl-og-06 using an internal version of NxSDK.
3Loihi 1 SNN measurements were obtained on Nahuku 32 board ncl-ghrd-01 using NxSDK v1.0.0

18NCL Neuromorphic Computing Lab

Redefining Artificial Intelligence with Neuromorphic
Computing

§ Representation: Sensing, memory
§ Evaluation of options: Optimization, planning
§ Decision making
§ Action: active sensing, sensing for acting

Diversity of neuronal “algorithms”

Artificial embodied intelligence

• Building intelligent
neural architectures

• With building blocks
inspired by bio-
computing principles

• Enabling smart
autonomous systems

arms, grippers
cognitive,

humanoids
autonomous

spaces

locomotion drones vehicles

Symbolic processing

19NCL Neuromorphic Computing Lab

170

To join:
inrc_interest@intel.com

20NCL Neuromorphic Computing Lab

Legal Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup
for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Results have been estimated or simulated.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

21NCL Neuromorphic Computing Lab

labsNCL Neuromorphic Computing Lab

References and System Test Configuration Details
[Task 1] P Blouw et al, 2018. arXiv:1812.01739

[Task 2] TY Liu et al, 2020, arXiv:2008.01380

[Task 3] KP Patel et al, “A spiking neural network for image segmentation,”
submitted, in review, Aug 2020.

[Task 4] Loihi: Nahuku system running NxSDK 0.95. CIFAR-10 image
recognition network trained using the SNN-Toolbox (code available at
https://snntoolbox.readthedocs.io/en/latest). CPU: Core i7-9700K with
32GB RAM, GPU: Nvidia RTX 2070 with 8GB RAM. OS: Ubuntu 16.04.6
LTS, Python: 3.5.5, TensorFlow: 1.13.1. Performance results are based on
testing as of July 2020 and may not reflect all publicly available security
updates.

[Task 5] Loihi: Nahuku system running NxSDK 0.95. Gesture recognition
network trained using the SLAYER tool (code available at
https://github.com/bamsumit/slayerPytorch). Performance results are
based on testing as of July 2020 and may not reflect all publicly available
security updates. TrueNorth: Results and DVS Gesture dataset from A.
Amir et al, “A low power, fully event-based gesture recognition system,” in
IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2017.

[Task 6] T. Taunyazov et al, 2020. RSS 2020

[Task 7] Bellec et al, 2018. arXiv:1803.09574. Loihi: Loihi: Wolf Mountain
system running NxSDK 0.85. CPU: Intel Core i5-7440HQ, with 16GB
running Windows 10 (build 18362), Python: 3.6.7, TensorFlow: 1.14.1. GPU:
Nvidia Telsa P100 with 16GB RAM. Performance results are based on
testing as of December 2018 and may not reflect all publicly available
security updates.

[Task 8] T. DeWolf et al, “Nengo and Low-Power AI Hardware for Robust,
Embedded Neurorobotics,” Front. in Neurorobotics, 2020.

[Task 9] Loihi Lasso solver based on PTP Tang et al, “Sparse coding by
spiking neural networks: convergence theory and computational results,”
arXiv:1705.05475, 2017. Loihi: Wolf Mountain system running NxSDK
0.75. CPU: Intel Core i7-4790 3.6GHz w/ 32GB RAM running Ubuntu
16.04 with HyperThreading disabled, SPAMS solver for FISTA,
http://spams-devel.gforge.inria.fr/.

[Task 10] G Tang et al, 2019. arXiv:1903.02504

[Task 11] EP Frady et al, 2020. arXiv:2004.12691

[Task 12] Loihi graph search algorithm based on Ponulak F., Hopfield J.J.
Rapid, parallel path planning by propagating wavefronts of spiking neural
activity. Front. Comput. Neurosci. 2013. Loihi: Nahuku and Pohoiki Springs
systems running NxSDK 0.97. CPU: Intel Xeon Gold with 384GB RAM,
running SLES11, evaluated with Python 3.6.3, NetworkX library
augmented with an optimized graph search implementation based on
Dial’s algorithm. See also
http://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_Mike_Davies.pdf

[Task 13] Loihi: constraint solver algorithm based on G.A. Fonseca Guerra
and S.B. Furber, Using Stochastic Spiking Neural Networks on SpiNNaker
to Solve Constraint Satisfaction Problems. Front. Neurosci. 2017. Tested
on the Nahuku 32-chip system running NxSDK 0.98. CPU: Core i7-9700K
with 32GB RAM running Coin-or Branch and Cut
(https://github.com/coin-or/Cbc). Performance results are based on
testing as of July 2020 and may not reflect all publicly available security
updates.

Results may vary.

https://snntoolbox.readthedocs.io/en/latest
https://github.com/bamsumit/slayerPytorch
http://spams-devel.gforge.inria.fr/
https://arxiv.org/abs/1903.02504
http://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_Mike_Davies.pdf
https://github.com/coin-or/Cbc

labsNCL Neuromorphic Computing Lab

Loihi 2 Performance Analysis Details

2 Based on comparisons between barrier synchronization
time, synaptic update time, neuron update time, and neuron
spike times between Loihi 1 and 2. Loihi 1 parameters
measured from silicon characterization (see below); Loihi 2
parameters measured from both silicon characterization
with N3B1 revision and pre-silicon circuit simulations using
back-annotated timing for Loihi 2.
3 Based on Lava simulations in September, 2021 of a nine-
layer variant of the PilotNet DNN inference workload
implemented as a sigma-delta neural network on Loihi 2
compared to the same network implemented with SNN rate-
coding on Loihi. The Loihi 2 SDNN implementation gives
better accuracy than the Loihi 1 rate-coded implementation.

4 Circuit simulations of Loihi 2’s wave pipelined signaling
circuits show 800 Mtransfers/s compared to Loihi 1’s
measured performance of 185 Mtransfers/s.
5 Based on analysis of 3-chip and 7-chip Locally Competitive
Algorithm examples.

The Lava performance model for both chips is based on silicon characterization in September 2021 using the Nx SDK
release 1.0.0 with an Intel Xeon E5-2699 v3 CPU @ 2.30 GHz, 32GB RAM, as the host running Ubuntu version 20.04.2.
Loihi results use Nahuku-32 system ncl-ghrd-04. Loihi 2 results use Oheo Gulch system ncl-og-04. Results may vary.

24NCL Neuromorphic Computing Lab

Neuromorphic computing: Core elements

Network topology

• Fine-grained parallelism
• Modularity, recurrence

Spiking neuron: leaky integrate and fire

• Time is explicitly included in computation
• Events (spikes) transmit activation
• Spatial-temporal patterns pre post

Learning: synaptic plasticity

• Local learning rules

